簡易檢索 / 詳目顯示

研究生: 陳亭瑋
Chen, Ting-Wei
論文名稱: 利⽤動態無限點法求解半無限域問題
Solving Semi-Infinite Domain Problems Using the Dynamic Infinite Meshfree Method
指導教授: 林冠中
Lin, Kuan-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 77
中文關鍵詞: 無網格法動態無限點法半無限域SCNINSNI克羅內克函數
外文關鍵詞: Meshfree methods, Dynamic infinite meshfree method, Semi-infinite domain, SCNI, NSNI, Kronecker delta property
相關次數: 點閱:62下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中針對半無限域問題提出了一種創新的分析方法,為利用無網格法與動態無限點法的耦合方式來解決問題。大自然中土壤為一無窮遠的範圍,欲直接分析將十分的耗時,因此在分析時會以一個人工的邊界劃分出有限的範圍,在邊界內部稱之為近域,邊界外部稱為遠域。研究中將使用無網格法中的再生核質點法(Reproducing Kernel Particle Method, RKPM)針對近域進行分析,而動態無限點法(Dynamic Infinite Meshfree Method, DIMM)則針對遠域進行分析。再生核質點法為直接在定義域建構再生核形狀函數,並採用穩定一致節點積分法(Stabilized Conforming Nodal Integration, SCNI)進行數值積分,若結果產生誤差,則使用自然穩定節點積分法(Naturally Stabilized Nodal Integration, NSNI)進行修正。動態無限點法為利用邊界上所建構的一維再生核形狀函數與波傳函數相互結合,以模擬波源消散至無窮遠的狀況,並採用Newton-Cotes積分法進行無窮遠處的積分,此外在邊界處也會使用邊界奇異核法(Boundary Singular Kernel Method, BSKM)來滿足無網格法中所缺乏的克羅內克函數性質。
    在動態和靜態的半無限域問題上,使用RK-DIMM耦合方法分析時調整近域離散點間距以及針對問題調整無限點長度,都可以達到穩定且精準的結果。為了使分析更為自動化,也針對問題採非均勻離散化下的分析,並透過自然穩定節點積分法進行修正,以達到精準的分析結果。本研究成功只以無網格離散點分析的方式運用在半無限域的問題中,避免傳統使用有限元素法及無限元素法的方式模擬導致計算耗時且網格易失真的缺點,為後續相關領域提供了一種新的數值解決方法。

    In this study, an innovative analytical approach is proposed for addressing the semi-infinite domain problems by a new coupled method of RK-DIMM. In nature, soil extends indefinitely, making direct analysis extremely time-consuming. Therefore, in the analysis, a finite domain is artificially delineated by a boundary, termed as the near-field within the boundary and the far-field outside it. The reproducing kernel particle method (RKPM) from the meshfree method will be employed to analyze the near-field, while the method of dynamic infinite meshfree method (DIMM) will be used for analyzing the far-field. RKPM involves constructing reproducing kernel shape functions directly in the domain of interest and employing stabilized conforming nodal integration (SCNI) for numerical integration. In case of errors, naturally stabilized nodal integration (NSNI) will be utilized for correction. DIMM involves the integration of one-dimensional reproducing kernel shape function and wave propagation function constructed on the boundary to simulate the phenomenon of waves propagating to infinity. Newton-Cotes integration method is used for integration at infinity. Additionally, at the boundary, the boundary singular kernel method (BSK) is employed to fulfill the lacking properties of the Kronecker delta function in the meshfree method.
    By utilizing RK-DIMM, adjusting the spacing between discrete points, the wave number and decay factor for the problem both lead to stable and accurate results. In order to make the analysis more automated, the problem is also analyzed under non-uniform discretization and corrected through the NSNI to achieve accurate analysis results. This study successfully employs a meshfree discretization approach solely for analyzing problems in semi- infinite domain, thus avoiding the drawbacks of traditional finite and infinite element methods, which often lead to time-consuming computations and grid distortions. This provides a new numerical solution method for subsequent related fields.

    中文摘要 I Abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 符號說明 XII 第一章 緒論 1 1-1. 研究動機 1 1-2. 文獻回顧 2 1-2.1 無網格法簡介 2 1-2.2 無網格法積分方法簡介 3 1-2.3 無網格法狄利克雷邊界處理方法 4 1-2.4 邊界波傳消散方法簡介 5 1-3. 本文結構 7 第二章 基本理論 8 2-1. 再生核質點法 (Reproducing Kernel Particle Method, RKPM) 8 2-2. 動態無限點法 (Dynamic Infinite Meshfree Method, DIMM) 11 2-3. 邊界奇異核法 (Boundary Singular Kernel Method, BSKM) 13 第三章 數值積分方法 16 3-1. 穩定一致節點積分法 (Stabilized Conforming Nodal Integration, SCNI) 17 3-2. 自然穩定節點積分法 (Naturally Stabilized Nodal Integration, NSNI) 18 3-3. Newton-Cotes 積分法 20 第四章 動態問題 22 4-1. 非傅立葉熱傳強形式 (Strong Form)及弱形式 (Weak Form) 22 4-2. 伽遼金形式 (Galerkin Form) 及矩陣形式 (Matrix Form) 23 4-3. 非傅立葉熱傳無因次介紹 26 4-4. 問題描述 29 4-5. 分析結果 30 4-5.1 無網格法不穩定結果 30 4-5.2 穩定性分析 32 4-5.3 收斂性分析 36 4-5.4 非均勻離散化分析 39 第五章 靜態問題 42 5-1. 半無限域靜態熱傳問題 42 5-2. 半無限域二維彈性體線載重問題 49 第六章 結論與未來展望 55 6-1. 結論 55 6-2. 未來展望 56 參考文獻 57

    [1] T. Belytschko, Y.Y. Lu, and L. Gu. Element-free galerkin methods. International Journal for Numerical Methods in Engineering, 37(2):229–256, 1994.
    [2] J.P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2):185–200, 1994.
    [3] P. Bettess and O.C. Zienkiewicz. Diffraction and refraction of surface waves using finite and infinite elements. International Journal for Numerical Methods in Engineering, 11(8):1271–1290, 1977.
    [4] J.S. Chen, W. Han, Y. You, and X. Meng. A reproducing kernel method with nodal interpolation property. International Journal for Numerical Methods in Engineering, 56(7):935–960, 2003.
    [5] J.S. Chen, M. Hillman, and S.W. Chi. Meshfree Methods: Progress Made after 20 Years. Journal of Engineering Mechanics, 143(4), 2017.
    [6] J.S. Chen, M. Hillman, and M. Rüter. An arbitrary order variationally consistent integration for galerkin meshfree methods. International Journal for Numerical Methods in Engineering, 95(5):387–418, 2013.
    [7] J.S. Chen, C. Pan, C.T. Wu, and W.K. Liu. Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer Methods in Applied Mechanics and Engineering, 139(1-4):195–227, 1996.
    [8] J.S. Chen and H.P. Wang. New boundary condition treatments in meshfree computation of contact problems. Computer Methods in Applied Mechanics and Engineering, 187(3-4):441–468, 2000.
    [9] J.S. Chen, C.T. Wu, S. Yoon, and Y. You. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 50(2):435–466, 2001.
    [10] J.S. Chen, S. Yoon, and C.T. Wu. Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 53(12):2587–2615, 2002.
    [11] A. Curnier. A static infinite element. International Journal for Numerical Methods in Engineering, 19(10):1479–1488, 1983.
    [12] B. Engquist and A. Majda. Absorbing boundary conditions for numerical simulation of waves. Proceedings of the National Academy of Sciences, 74(5):1765–1766, 1977.
    [13] S. Fernández-Méndez and A. Huerta. Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 193(12):1257–1275, 2004.
    [14] P.C. Guan, J.S. Chen, Y. Wu, H. Teng, J. Gaidos, K. Hofstetter, and M. Alsaleh. Semi-lagrangian reproducing kernel formulation and application to modeling earth moving operations. Mechanics of Materials, 41(6):670–683, 2009.
    [15] P.C. Guan, S.W. Chi, J.S. Chen, T.R. Slawson, and M.J. Roth. Semi-lagrangian reproducing kernel particle method for fragment-impact problems. International Journal of Impact Engineering, 38(12):1033–1047, 2011.
    [16] Y. He, H. Yang, and A.J. Deeks. An element-free Galerkin (EFG) scaled boundary method. Finite Elements in Analysis and Design, 62:28–36, 2012.
    [17] Y. He, H. Yang, and A.J. Deeks. An element-free galerkin scaled boundary method for steady-state heat transfer problems. Numerical Heat Transfer, Part B: Fundamentals, 64(3):199–217, 2013.
    [18] M. Hillman and J.S. Chen. An accelerated, convergent, and stable nodal integration in galerkin meshfree methods for linear and nonlinear mechanics. International Journal for Numerical Methods in Engineering, 107(7):603–630, 2016.
    [19] M. Hillman, J.S. Chen, and Y. Bazilevs. Variationally consistent domain integration for isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 284:521–540, 2015.
    [20] M. Hillman and K.C. Lin. Consistent weak forms for meshfree methods: Full realization of h-refinement, p-refinement, and a-refinement in strong-type essential boundary condition enforcement. Computer Methods in Applied Mechanics and Engineering, 373:113448, 2021.
    [21] T.H. Huang, H. Wei, J.S. Chen, and M.C. Hillman. Rkpm2d: an open-source implementation of nodally integrated reproducing kernel particle method for solving partial differential equations. Computational Particle Mechanics, 7(2):393–433, 2020.
    [22] K.C. Lin, H.L. Hsieh, Y.B. Yang, C.K. Chiu, and H.Y. Chang. A coupled rkpm and dynamic infinite element approach for solving static and transient heat conduction problems. Engineering Analysis with Boundary Elements, 150:528–541, 2023.
    [23] K.C. Lin, H.H. Hung, J.P. Yang, and Y.B. Yang. Seismic analysis of underground tunnels by the 2.5D finite/infinite element approach. Soil Dynamics and Earthquake Engineering, 85:31–43, 2016.
    [24] W.K. Liu, S. Jun, and Y.F. Zhang. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20(8-9):1081–1106, 1995.
    [25] L.B. Lucy. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, vol. 82, p. 1013-1024., 82:1013–1024, 1977.
    [26] B. Nayroles, G. Touzot, and P. Villon. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics, 10(5):307–318, 1992.
    [27] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, 36(1):9–15, 1971.
    [28] Z.S. Sacks, D.M. Kingsland, R. Lee, and J.F. Lee. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE transactions on Antennas and Propagation, 43(12):1460–1463, 1995.
    [29] C.H. Song and J.P. Wolf. Finite-element modelling of unbounded media, 1996.
    [30] R.F. Ungless. Infinite finite element. PhD thesis, University of British Columbia, 1973.
    [31] Y.B. Yang and H.H. Hung. A 2.5D finite/infinite element approach for modelling viscoelastic bodies subjected to moving loads. International Journal for Numerical Methods in Engineering, 51(11):1317–1336, 2001.
    [32] Y.B. Yang, H.H. Hung, and D.W. Chang. Train-induced wave propagation in layered soils using finite/infinite element simulation. Soil Dynamics and Earthquake Engineering, 23(4):263–278, 2003.
    [33] Y.B. Yang, H.H. Hung, K.C. Lin, and K.W. Cheng. Dynamic Response of Elastic Half-Space with Cavity Subjected to P and SV Waves by Finite/Infinite Element Approach. International Journal of Structural Stability and Dynamics, 15(7):1540009, 2015.
    [34] T. Zhu and S. Atluri. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free galerkin method. Computational Mechanics, 21(3):211–222, 1998.
    [35] O.C. Zienkiewicz and P. Bettess. Infinite elements in the study of fluid-structure interaction problems. In Computing methods in applied sciences, pages 133–172. Springer, 1976.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE