簡易檢索 / 詳目顯示

研究生: 吳岳勳
Wu, Yue-Xun
論文名稱: 以四甲基氫氧化銨表面處理及二次熱退火製程研製高崩潰電壓之增強型金氧半高電子遷移率電晶體
Development of High Breakdown Voltage Enhancement-Mode GaN MOS-HEMTs Using TMAH Surface Treatment and Secondary Annealing Process
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 112
中文關鍵詞: 氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體高崩潰電壓功率元件掘入式閘極二次退火沉積後熱退火表面處理
外文關鍵詞: AlGaN/GaN, HEMT, High Breakdown Voltage, Power Electronic, Gate Recess, Secondary Annealing, PDA, Surface Treatment
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功率半導體元件是有效利用電力能源所不可缺少的關鍵元件,尤其高耐壓特徵是備受矚目,可應用於各式電器的電源、電動車的逆變器…等。而大家熟知的寬能隙半導體―氮化鎵,便成為了功率元件的指標性材料。
    本論文透過氮化鋁鎵/氮化鎵異質結構研製功率元件。事實上,傳統氮化鋁鎵/氮化鎵高電子遷移率電晶體為常開模式,使得元件在零偏壓的情形下,仍會有額外的能量逸散。因此本研究透過閘極蝕刻技術,去除部分氮化鋁鎵,減少極化效應以空乏二維電子雲,使元件轉為常關型操作。
    然而電漿蝕刻會對氮化鋁鎵表面造成損傷,因此在本論文中,我們在蝕刻後浸泡四甲基氫氧化銨溶液並進行熱退火修復。此外,我們也進行了第二次退火―閘極氧化層沉積後熱退火,進一步提升氧化層品質。
    在本篇論文中,我們以閘極蝕刻技術製作增強型高電子遷移率電晶體,其臨界電壓達0.77V、次臨界擺幅89.9 mV/dec、電流開關比1.59×109,閘極漏電流可抑制至2×108 mA/mm且崩潰電壓高達752V。

    Power electronics are crucial for efficient energy utilization, particularly in high-voltage applications like power supplies and inverters in electric vehicles. Gallium nitride (GaN), a wide bandgap semiconductor, is a key material in this field. This thesis explores power devices using AlGaN/GaN heterostructures. Conventional AlGaN/GaN high electron mobility transistors (HEMTs) operate in depletion mode, causing energy dissipation at zero bias.
    This study implements gate etching to partially remove AlGaN, reducing polarization effects and converting the device to normally off mode. Post-etching, samples are treated with TMAH and subjected to thermal annealing to repair etching damage. Additional annealing post-gate oxide deposition further improves oxide quality.
    The enhanced-mode HEMTs produced show a threshold voltage (Vth) of 0.77V, a subthreshold swing (S.S.) of 89.9 mV/dec, an on-off current ratio of 1.59×109, gate leakage current suppression to 2×10-8 mA/mm, and a breakdown voltage of 752V.

    中文摘要 I Abstract III Acknowledgments V Table of Contents XI List of Figures XVI List of Tables XXI CHAPTER 1 Introduction 1 1.1 Background 1 1.2 Motivation 5 1.3 Organization 9 CHAPTER 2 Basic Theory & Principle 10 2.1 AlGaN/GaN Heterostructure 10 2.1.1 Material Structure 10 2.1.2 Polarization effect 13 2.1.3 Two-dimensional electron gas (2DEG) formation. ...21 2.2 Surface Treatment 25 2.3 Post-Deposition Annealing (PDA) 28 2.4 Short-Circuit Capability 31 CHAPTER 3 Experiments & Fabrication 34 3.1 Experimental Equipment 34 3.1.1 Spin Coater 34 3.1.2 Oven 35 3.1.3 Mask Aligner 36 3.1.4 ICP-RIE 37 3.1.5 E-Beam Evaporator 38 3.1.6 Rapid Thermal Annealing 39 3.1.7 Atomic Layer Deposition System 40 3.1.8 Atomic Force Microscope 41 3.1.9 Focused Ion Beam 42 3.1.10 Transmission Electron Microscope 43 3.1.11 Semiconductor Analyzer 44 3.2 Device Fabrication Process 45 3.2.1 Sample Cleaning 45 3.2.2 Mesa isolation 46 3.2.3 Source and Drain Ohmic Contact 47 3.2.4 Gate Recess Process & Surface Treatment 49 3.2.5 Deposit Al2O3 by ALD System & PDA Process 50 3.2.6 Schottky Gate Metal Deposition 50 3.3 Schematic Procedures 52 CHAPTER 4 Results and Discussion 56 4.1 The properties of Al2O3 gate dielectric 56 4.1.1 Transmission Electron Microscopy (TEM) 56 4.1.2 Energy-Dispersive X-ray Spectroscopy Analysis 57 4.2 Surface Roughness of Gate Recess Region 59 4.3 D-mode MOS-HEMT Performance 60 4.3.1 Saturation Drain Current 60 4.3.2 Transfer Characteristics 61 4.3.3 Subthreshold Swing and On-off Ratio 63 4.3.4 Gate Leakage Current 65 4.3.5 Off-state Breakdown Characteristics 66 4.4 E-mode MOS-HEMT Performance 68 4.4.1 Saturation Drain Current 68 4.4.2 Transfer Characteristics 71 4.4.3 Subthreshold Swing and On-off Ratio 74 4.4.4 Gate Leakage Current 76 4.4.5 Off-state Breakdown Characteristics 78 4.4.6 C-V measurement 80 CHAPTER 5 Conclusion 83 CHAPTER 6 Future Work 85 References 86

    [1] C. Andersson, J. Bengtsson, G. Byström, P. Frenger, Y. Jading, and M. Nordenström, "Improving energy performance in 5G networks and beyond," Ericsson Technology Review, vol. 2022, no. 8, pp. 2-11, 2022, doi: 10.23919/ETR.2022.9911220.
    [2] L. F. S. Alves et al., "SIC power devices in power electronics: An overview," in 2017 Brazilian Power Electronics Conference (COBEP), 19-22 Nov. 2017 2017, pp. 1-8, doi: 10.1109/COBEP.2017.8257396.
    [3] F. Roccaforte et al., "Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices," Microelectronic Engineering, vol. 187-188, pp. 66-77, 2018/02/05/ 2018, doi: https://doi.org/10.1016/j.mee.2017.11.021.
    [4] Y. Zhong et al., "A review on the GaN-on-Si power electronic devices," Fundamental Research, vol. 2, no. 3, pp. 462-475, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.fmre.2021.11.028.
    [5] K. J. Chen et al., "GaN-on-Si Power Technology: Devices and Applications," IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 779-795, 2017, doi: 10.1109/TED.2017.2657579.
    [6] H. Wang et al., "823-mA/mm Drain Current Density and 945-MW/cm2 Baliga’s Figure-of-Merit Enhancement-Mode GaN MISFETs With a Novel PEALD-AlN/LPCVD-Si3N4 Dual-Gate Dielectric," IEEE Electron Device Letters, vol. 39, no. 12, pp. 1888-1891, 2018, doi: 10.1109/LED.2018.2879543.
    [7] O. Ambacher, "Growth and applications of Group III-nitrides," Journal of Physics D: Applied Physics, vol. 31, no. 20, p. 2653, 1998/10/21 1998, doi: 10.1088/0022-3727/31/20/001.
    [8] S. Mohsenifar and M. H. Shahrokh Abadi, "Gate Stack High-κ Materials for Si-Based MOSFETs Past, Present, and Futures," Microelectronics and Solid State Electronics, vol. 4, pp. 12-24, 10/01 2015, doi: 10.5923/j.msse.20150401.03.
    [9] T. L. Wu, D. Marcon, M. B. Zahid, M. V. Hove, S. Decoutere, and G. Groeseneken, "Comprehensive investigation of on-state stress on D-mode AlGaN/GaN MIS-HEMTs," in 2013 IEEE International Reliability Physics Symposium (IRPS), 14-18 April 2013 2013, pp. 3C.5.1-3C.5.7, doi: 10.1109/IRPS.2013.6531987.
    [10] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, "Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode," IEEE Transactions on Electron Devices, vol. 53, no. 9, pp. 2207-2215, 2006, doi: 10.1109/TED.2006.881054.
    [11] H. Mizuno, S. Kishimoto, K. Maezawa, and T. Mizutani, "Quasi‐normally‐off AlGaN/GaN HEMTs fabricated by fluoride‐based plasma treatment," physica status solidi (c), vol. 4, pp. 2732-2735, 06/01 2007, doi: 10.1002/pssc.200674859.
    [12] N. Tsuyukuchi et al., "Low-Leakage-Current Enhancement-Mode AlGaN/GaN Heterostructure Field-Effect Transistor Using p-Type Gate Contact," Japanese Journal of Applied Physics, vol. 45, no. 3L, p. L319, 2006/03/10 2006, doi: 10.1143/JJAP.45.L319.
    [13] Y. Uemoto et al., "Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation," IEEE Transactions on Electron Devices, vol. 54, no. 12, pp. 3393-3399, 2007, doi: 10.1109/TED.2007.908601.
    [14] D. Marcon et al., "Direct comparison of GaN-based e-mode architectures (recessed MISHEMT and p-GaN HEMTs) processed on 200mm GaN-on-Si with Au-free technology," Proceedings of SPIE - The International Society for Optical Engineering, vol. 9363, 03/13 2015, doi: 10.1117/12.2077806.
    [15] W. Lanford, T. Tanaka, Y. Otoki, and I. Adesida, "Recessed-gate enhancement-mode GaN HEMT with high threshold voltage," Electronics Letters, vol. 41, pp. 449-450, 05/01 2005, doi: 10.1049/el:20050161.
    [16] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, "Recessed-gate structure approach toward normally off high-Voltage AlGaN/GaN HEMT for power electronics applications," IEEE Transactions on Electron Devices, vol. 53, no. 2, pp. 356-362, 2006, doi: 10.1109/TED.2005.862708.
    [17] F. Lee, L. Y. Su, C. H. Wang, Y. R. Wu, and J. Huang, "Impact of Gate Metal on the Performance of p-GaN/AlGaN/GaN High Electron Mobility Transistors," IEEE Electron Device Letters, vol. 36, no. 3, pp. 232-234, 2015, doi: 10.1109/LED.2015.2395454.
    [18] Y. J. Yoon et al., "TMAH-based wet surface pre-treatment for reduction of leakage current in AlGaN/GaN MIS-HEMTs," Solid-State Electronics, vol. 124, pp. 54-57, 2016/10/01/ 2016, doi: https://doi.org/10.1016/j.sse.2016.06.009.
    [19] T. Wonglakhon and D. Zahn, "Interaction potentials for modelling GaN precipitation and solid state polymorphism," Journal of Physics: Condensed Matter, vol. 32, no. 20, p. 205401, 2020/02/18 2020, doi: 10.1088/1361-648X/ab6cbe.
    [20] T. Hanada, "Basic properties of ZnO, GaN, and related materials," in Oxide and nitride semiconductors: processing, properties, and applications: Springer, 2009, pp. 1-19, doi: 10.1007/978-3-540-88847-5_1.
    [21] F. Roccaforte and M. Leszczynski, "Introduction to Gallium Nitride Properties and Applications," in Nitride Semiconductor Technology, 2020, pp. 1-39, doi: 10.1002/9783527825264.ch1.
    [22] O. Ambacher et al., "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, no. 1, pp. 334-344, 2000, doi: 10.1063/1.371866.
    [23] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Physical Review B, vol. 56, no. 16, pp. R10024-R10027, 10/15/ 1997, doi: 10.1103/PhysRevB.56.R10024.
    [24] H. Zhang, Hot-wall MOCVD of N-polar group-III nitride materials. 2021, doi: 10.3384/lic.diva-175502.
    [25] J. McClory, "The Effect of Radiation on the Electrical Properties of Aluminum Gallium Nitride/Gallium Nitride Heterostructures," p. 176, 06/01 2008, doi: 10.1016/j.mssp.2014.11.052.
    [26] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Accurate Calculation of Polarization-Related Quantities in Semiconductors," Physical Review B, vol. 63, 11/14 2000, doi: 10.1103/PhysRevB.63.193201.
    [27] X. A. Cao, S. J. Pearton, G. T. Dang, A. P. Zhang, F. Ren, and J. M. V. Hove, "GaN n- and p-type Schottky diodes: Effect of dry etch damage," IEEE Transactions on Electron Devices, vol. 47, no. 7, pp. 1320-1324, 2000, doi: 10.1109/16.848271.
    [28] K.-W. Kim et al., "Effects of TMAH treatment on device performance of normally off Al 2O3/GaN MOSFET," IEEE Electron Device Letters, vol. 32, pp. 1376-1378, 10/01 2011, doi: 10.1109/LED.2011.2163293.
    [29] F. Khan, V. Kumar, and I. Adesida, "Inductively coupled plasma-induced damage in AlGaN/GaN HEMTs," Electrochemical and Solid State Letters - ELECTROCHEM SOLID STATE LETT, vol. 5, 02/01 2002, doi: 10.1149/1.1430363.
    [30] P. Fernandes Paes Pinto Rocha et al., "Impact of post-deposition anneal on ALD Al2O3/etched GaN interface for gate-first MOSc-HEMT," Power Electronic Devices and Components, vol. 4, p. 100033,2023/03/01/2023,doi:https://doi.org/10.1016/j.pedc.2023.100033.
    [31] D. Bisi et al., "Short-Circuit Capability Demonstrated for GaN Power Switches," in 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 14-17 June 2021 2021, pp. 370-375, doi: 10.1109/APEC42165.2021.9486987.
    [32] R. S. Chokhawala, J. Catt, and L. Kiraly, "A discussion on IGBT short-circuit behavior and fault protection schemes," IEEE Transactions on Industry Applications, vol. 31, no. 2, pp. 256-263, 1995, doi: 10.1109/28.370271.
    [33] J. Yu et al., "650-V E-Mode p-GaN Gate HEMT With Schottky Source Extension Towards Enhanced Short-Circuit Reliability," IEEE Electron Device Letters, vol. 44, no. 10, pp. 1700-1703, 2023, doi: 10.1109/LED.2023.3310527.

    無法下載圖示 校內:2029-08-04公開
    校外:2029-08-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE