| 研究生: |
陳柏維 Chen, Boa-Wei |
|---|---|
| 論文名稱: |
大型風場內不同風機陣列擺放以及不同入流條件對功率輸出影響之探討 Power output efficiency in large wind farms with different turbine-array configurations and different incoming flow conditions |
| 指導教授: |
吳毓庭
Wu, Yu-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 大渦漩模擬 、風機陣列 、葉片元素理論 、功率輸出 、對齊風電場 、交錯風電場 、粗糙長度 |
| 外文關鍵詞: | Large-eddy simulation, turbine-array layout, blade element momentum theory, power output, aligned, staggered, roughness length, WAsP |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要透過大渦漩模擬(Large eddy simulation)來模擬在中性邊界層下,不同風機陣列擺放的風力發電廠所形成的整體流況,其中引進了風機模組以及相關的風機參數來將風機所造成的力作用導入到流場的動量方程式中,最後藉由計算所得到的速度場資料以葉片元素理論(blade element theory) 來計算整體風場的功率輸出。
此篇研究考慮九個渦輪陣列的佈局,其中每個渦輪陣列配置4行30列共120支風機沿著入流方向以對齊或交錯形式佈置。我們在此九個大型風力發電場中進行模擬,其中一個為完全對齊的配置、四個橫向交錯配置、三個垂直向交錯配置以及一個橫向和縱向同時交錯的配置。與在對齊的風力發電場中的風機微觀坐標為對準的不同,橫向交錯和垂直交錯的佈置都導致風機在橫向和垂直方向上具有未對準的交錯情況。模擬結果顯示,在這裡考慮的風力發電場中的功率輸出在前12排風機中明顯減少到55-65%,然後在風機的其餘幾排的功率輸出則保持在該範圍內。總體而言,交錯佈置的風力發電場比對齊佈置的風力發電場能產生更多的電力。
本研究亦針對不同的地表粗糙度的風場做模擬並比較,分別有粗糙長度為 0.5、0.05、0.005 公尺的風場,而每種風場以主要的四種風機陣列來進行模擬。其中我們亦使用WAsP套軟進行上述風場及風機陣列做模擬,最後再與大渦漩模擬程式的結果相互比較及並且進行探討。
Large-eddy simulation (LES) is used to investigate the effect of the spatial arrangement of a utility-scale wind turbine array on the power outputs produced from individual turbines. The wind turbine module and turbine-related parameters were used to substitute into the momentum equation to get the velocity of the flow field. Finally, the simulated velocity field data was substituted in the blade element momentum theory (BEM) to obtain the wind farm power outputs. Nine turbine-array layouts, where each has 120 turbines installed in 30 rows with aligned or staggered configurations along the wake-wise direction, are considered. We perform the LESs of neutrally-stratified atmospheric boundary layer over the nine wind farms with the turbines arranged with a perfectly aligned configuration, four laterally-staggered (LS) configurations, three vertically-staggered (VS) configurations, and one fully-staggered (FS) configuration. Unlike the alignment of the turbine micro-siting in the aligned wind farm, both the LS, VS, and FS configurations lead to the misalignment of the turbines with staggered arrangement in the lateral and vertical directions. Simulation results show that the power outputs in the most wind farms considered here have an obvious decrease to 55-75% within the first 12 turbine rows and then retain within that range in the rest of the turbine rows. Overall, the staggered turbine configuration can raise the efficiency of power production from the downstreamturbines siting in a large wind farm.
This study also simulated and compared wind farms with different surface roughness, and the roughness lengths are 0.5, 0.05, and 0.005 m, respectively. Each type of wind farms are simulated with the four kinds of turbine arrays. In the end, we also use WAsP to simulate the above wind farms with different turbine arrays, and then compared the results with those from LESs.
Archer, C.L., Evaluation of global wind power. Journal of Geophysical Research, 2005. 110(D12).
2. Hansen, K.S., et al., The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy, 2012. 15(1): p. 183-196.
3. Porté-Agel, F., Y.-T. Wu, and C.-H. Chen, A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm. Energies, 2013. 6(10): p. 5297-5313.
4. Creech, A., W.-G. Früh, and A.E. Maguire, Simulations of an Offshore Wind Farm Using Large-Eddy Simulation and a Torque-Controlled Actuator Disc Model. Surveys in Geophysics, 2015. 36(3): p. 427-481.
5. Nilsson, K., et al., Large-eddy simulations of the Lillgrund wind farm. Wind Energy, 2015. 18(3): p. 449-467.
6. Barthelmie, R.J., et al., Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy, 2009. 12(5): p. 431-444.
7. Barthelmie, R.J. and L.E. Jensen, Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy, 2010. 13(6): p. 573-586.
8. Barthelmie, R.J., et al., Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms. Journal of Atmospheric and Oceanic Technology, 2010. 27(8): p. 1302-1317.
9. Wu, Y.-T. and F. Porté-Agel, Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm. Renewable Energy, 2015. 75: p. 945-955.
10. Miller, A., et al., Review of computer-aided numerical simulation in wind energy. Renewable and Sustainable Energy Reviews, 2013. 25: p. 122-134.
11. González, J.S., et al., Optimization of wind farm turbines layout using an evolutive algorithm. Renewable Energy, 2010. 35(8): p. 1671-1681.
12. Eroğlu, Y. and S.U. Seçkiner, Design of wind farm layout using ant colony algorithm. Renewable Energy, 2012. 44: p. 53-62.
13. Kongnam, C., et al., Decision analysis on generation capacity of a wind park. Renewable and Sustainable Energy Reviews, 2009. 13(8): p. 2126-2133.
14. Elkinton, C.N., J.F. Manwell, and J.G. McGowan, Algorithms for offshore wind farm layout optimization. Wind Engineering, 2008. 32(1): p. 67-84.
15. Serrano González, J., et al., A review and recent developments in the optimal wind-turbine micro-siting problem. Renewable and Sustainable Energy Reviews, 2014. 30: p. 133-144.
16. Stevens, R.J.A.M., D.F. Gayme, and C. Meneveau, Large eddy simulation studies of the effects of alignment and wind farm length. Journal of Renewable and Sustainable Energy, 2014. 6(2).
17. Calaf, M., C. Meneveau, and J. Meyers, Large eddy simulation study of fully developed wind-turbine array boundary layers. Physics of Fluids, 2010. 22(1).
18. Sharma, V., et al., Evolution of flow characteristics through finite-sized wind farms and influence of turbine arrangement. Renewable Energy, 2018. 115: p. 1196-1208.
19. Jackson, P.S., On the displacement height in the logarithmic velocity profile. Journal of Fluid Mechanics, 2006. 111(-1).
20. Kollwitz, J., Defining the Wake Decay Constant as a Function of Turbulence Intensity to Model Wake Losses in Onshore Wind Farms. 2016.
21. Castellani, F., et al., Analysing wind farm efficiency on complex terrains. Journal of Physics: Conference Series, 2014. 524.
22. Kuo, J.Y.J., et al., Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming. Applied Energy, 2016. 178: p. 404-414.
23. Tian, W., A. Ozbay, and H. Hu, An experimental investigation on the wake interferences among wind turbines sited in aligned and staggered wind farms. Wind Energy, 2018. 21(2): p. 100-114.
24. Barlas, E., S. Buckingham, and J. van Beeck, Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel. Boundary-Layer Meteorology, 2015. 158(1): p. 27-42.
25. Wu, Y.-T. and F. Porté-Agel, Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study. Energies, 2012. 5(12): p. 5340-5362.
26. Stoll, R. and F. Porté-Agel, Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resources Research, 2006. 42(1).
27. Wu, Y.-T. and F. Porté-Agel, Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations. Boundary-Layer Meteorology, 2010. 138(3): p. 345-366.
28. Wu, Y.-T. and F. Porté-Agel, Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects. Boundary-Layer Meteorology, 2012. 146(2): p. 181-205.
29. https://www.statista.com/statistics/476327/global-capacity-of-offshore-wind-energy/
30. Esteban, M. and D. Leary, Current developments and future prospects of offshore wind and ocean energy. Applied Energy, 2012. 90(1): p. 128-136.
31. Nygaard, N.G., Wakes in very large wind farms and the effect of neighbouring wind farms. Journal of Physics: Conference Series, 2014. 524.