| 研究生: |
曾偉元 Tseng, Wei-Yuan |
|---|---|
| 論文名稱: |
貼附有壓電片加強環之雙跨距複合圓柱殼承受移動負載之動態分析 Dynamic Analysis of Moving Load on Two-span Composite Cylindrical Shells Stiffened with Piezoelectric Ring |
| 指導教授: |
王榮泰
Wang, Rong-Tyai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 雙跨距圓柱殼 、壓電材料 、模態法 、動態負載 |
| 外文關鍵詞: | Two-span Composite Shells, Piezoelectric, Modal Analysis, Moving Load, Voltage |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文所探討的是附帶有加強環之雙跨距圓柱殼結構其自由振動的特性,接著考慮圓柱殼之中心面以及加強環之中心線其轉角、位移與橫切面之轉動慣量以及剪切效應。首先第一步驟是先建立圓柱殼在第i個跨距時的應力場、應變場與位移場的關係,接下來再進一步推導圓柱殼之運動方程式,之後再藉由轉換矩陣法來計算並分析圓柱殼結構之自由振動,以及其模態頻率與其相對應之模態形狀函數,最後則探討圓柱殼在長度、厚度、半徑等不同的幾何參數下對於頻率之影響以及頻率有何不同,並求出壓電材料其電荷之收集狀況。
在分析帶有內外壓電加強環之雙跨距圓柱殼結構時,考慮加強環之厚度、寬度對整體結構自由振動的影響以及此圓柱殼受到集中負載其動態響應,並運用之前所計算的來證明模態形狀函數其正交性質,接著利用模態法推導圓柱殼結構受到集中負載之模態振幅控制方程式,之後利用模態形狀函數以及模態法求出的動態方程式,在加上計算出振幅以及位移,即可以求出壓電材料上之電荷的收集情況。
The purpose of this thesis is to explore the dynamic analysis of the two-span composite cylindrical shells stiffened with a piezoelectric ring. The governing equations and boundary conditions of the entire composite cylinders are derived via the Hamilton’s principle. The natural frequencies and the corresponding sets of mode shape functions are obtained by analytical method. The method of modal analysis is adopted to investigate the dynamic responses of the composite shells and the electric charge accumulated on the surfaces of the piezoelectric ring caused by a moving load.
There are two kinds of composite shells, the difference between the two kinds of shells is theeir composite material arrangement. Two kinds of arrangements are [0/90/0/0/90/0] and [90/0/90/90/0/90], respectively. The natural frequency of shell will decrease while the ring thickness and width increase. The natural frequency of [90/0/90/90/0/90] shell will decrease while the ring thickness and widths increase. The [0/90/0/0/90/0] shells subjected to a moving load, the deformation of shell, and voltage on the ring will decrease as the ring thickness and width increase. As for the shells, the deformation of the shell and voltage on the ring will decrease as the ring thickness and width increase.
1. J. R. Vinson and T. W. Chou, Composite Materials and Their Use in Structures, Applied Science Publishers, London, 1975.
2. J. R. Vinson and R. L. Sierakowski, The Behavior of Structures Composed of Composite Materials, Martinus Nijhoff Publishers, Dordrecht, 1986.
3. Jack R. Vinson, The Behavior of Shells Composed of Isotropic and Copositive Materials, Kluwer Academic Publishers, Dordrecht, 1993.
4. S. B. Dong, “Free vibration of laminated orthotropic cylindrical shells.” Journal of the Acoustical Society of America, Vol. 44, pp. 1628-1635, 1968
5. S. B. Dong and Tso, “On a laminated orthotropic shell theory including transverse shear deformation.” Journal of Applied Mechanics, Vol. 39, pp.1091-1097, 1972.
6. C. W. Bert, V. Baker and D. Egle, “Free vibration of multilayer anisotropic cylindrical shells.”, Journal of Composite Materials, Vol. 3, pp. 480-499, 1969.
7. C. T. Sun and J. M. Whitney, “Axisymmetric vibrations of laminated composite cykindrical shell.” Journal of the Acoustical Society of America, Vol. 55, pp. 1238-1246, 1974.
8. D. J. Wilkins and T. S. Love, “Combined compression-torsion buckling tests of laminated composite cylindrical shells.” AIAA Journal of Aircraft, Vol. 12, No. 11, pp. 885-889, 1975.
9. T. Waltz and J. R. Vinson, “Interlaminar stresses in laminated cylindrical shells of composite materials.” AIAA Journal, Vol. 14, No. 9, pp. 1213-1218, 1976.
10. M. S. El Naschie, “Initial and post buckling of axially compressed orthotropic cylindrical shells.” AIAA Journal, Vol. 14, No. 10, pp. 1502-1504, 1976.
11. R. R. Fujczak, “Torsional fatigue behavior of graphite-epoxy cylinders.” Proceeding of the International Conference on Composite Materials(ICCM2), pp. 635-648, 1978.
12. M. Booton and R.C. Tennyson, “Buckling of imperfect anisotropic circular cylinders under combined loading.” Proceeding AIAA/ASME Structures, Structural Dynamics, Materials Conferrence, pp. 351-358, 1978.
13. T. Wah, “Circular symmetric vibrations of ring-stiffened cylindrical shells.” Journal of the Society of Industrial and Applied Mathematics 12, pp. 649-662, 1964.
14. T. Wah and W. C. L. Hu, “Vibration analysis of stiffened cylinders including inter-ring motion.” Journal of the Acoustical Society of America, Vol. 43, No. 5, pp. 1005-1016, 1968.
15. T. Wah and L. R. Calcote, Structure Analysis by Finite Difference Calculus, New York : Van Norstrand Reinhold Co, 1970.
16. C. M. Wang, “Ritz method for vibration analysis of cylindrical shells with ring stiffeners.” Journal of Engineering Mechanics, February, pp. 134-142, 1997.
17. D. E. Beskos and J. B. Oates, “Dynamic analysis of ring-stiffened circular cylindrical shells.” J. Sound and Vibration, Vol. 75, pp. 1-15, 1981.
18. I. D. Wilken and W. Soedel, “The receptance method applied to ring-stiffened cylindrical shells : analysis of modal characteristics.” Journal of Sound and Vibration, Vol. 44, No. 4, pp. 563-576, 1976.
19. I. D. Wilken and W. Soedel, “Simplified prediction of the modal characteristics of ring-stiffened cylindrical shells.” Journal of Sound and Vibration, Vol. 44, pp. 577-589, 1976.
20. Kevin. Forsberg, “Exact solution for natural frequencies of a ring-stiffened cylinders.” AIAA/ASME Structures, Structural Dynamics and Materials Conference, ASME Volume on Structures and Material, pp. 18-30, 1969.
21. Dravin G. Bhuta, “Transient response of a thin elastic cylindrical shell to a moving shock wave.” Journal of the Acoustical Society of America, Vol. 35, pp. 25-30, 1963.
22. James Sheng, “The response of a thin cylindrical shell to transient surface loading.” A.I.A.A.J. , Vol. 3, No 4, pp. 701-709, 1965.
23. C. A. Ross, R. L. Sierakowski and C. T. Sun, Dynamic Response of Composite Materials, Society of Experimental Mechanics Publication S-014, 1980.
24. A. M. J. Al-Najafi and G. B. Warburton, “Free vibration of ring-stiffened cylindrical shells.” Journal of Sound and Vibration, Vol. 13, No. 1, pp. 9-25, 1970.
25. J. Jiang and M. D. Olson, “Vibration analysis of orthogonally stiffened cylindrical shells using super finite element.” Journal of Sound and Vibration, Vol. 173, No. 1, pp. 73-83, 1994.
26. G. D. Galletly, “On the in-vacuo vibration of simply supported, ring-stiffened cylindrical shells.” Proceeding of the U. S. National Congress of Applied Mechanics, pp. 225-231, 1955.
27. C. B. Sharma and D. J. Jones, “Vibration characteristic of a clamped-free and clamped-ring-stiffened circular cylindrical shells.” Journal of Sound and Vibration, Vol. 14, pp. 459-474, 1971.
28. H. Chung, “Free vibration analysis of circular cylindrical shells.” Journal of Sound and Vibration, Vol. 74, No. 3, pp. 331-350, 1987.
29. S. Swaddiwudhipong, J. Tian and C. M. Wang, “Vibration of cylindrical shells with intermediate supports.” Journal of Sound and Vibration, Vol. 187, No. 1, pp. 69-93, 1995.
30. C. M. Wang, J. Tian and S. Swaddiwudhipong, “Buckling of cylindrical shells with internal ring supports.” Structure of Engineering and Mechanics, Vol. 2, No. 2, No.4, pp. 369-389, 1994.
31. Charles W. Bert and Chun-Do Kim, “Vibration of composite-material cylindrical shells with ring and stringer stiffeners.” Composite Structures, Vol. 25, No. 1-4, pp. 477-484, 1993.
32. S. P. Singh and K. Gupta, “Free damped flexural vibration analysis of composite cylindrical tubes using beam and shell theories.” Journal of Sound and Vibration, Vol. 172, No. 2, pp.171-190, 1994.
33. Young-Shin Lee and Young-Wann Kim, “Effect of boundary condition on natural frequencies for rotating composite cylindrical shells with orthogonal stiffeners.” Advances in Engineering Software, Vol. 30, pp. 649-655, 1999.
34. Young-Shin Lee and Young-Wann Kim, “Transient analysis of ring-stiffened composite cylindrical shells with both edges clamped.” Journal of Sound and Vibration, Vol. 252, No. 1, pp. 1-17, 2002.
35. G. E. Martin, “Determination of equivalent-circuit constants of piezoelectric resonators of moderately low Q by absolute-admittance measurements.” The Journal of the Acoustic Society of America, Vol. 26, No. 3, pp. 413-420, May 1954.
36. T. B. Bailey and J. E. Hubbard, “Distributed piezoelectric-polymer active vibration control of a cantilever beam.”, Journal of Guidance Control, and Dynamics, Vol. 8, No. 5, pp. 605-611, 1985.
37. K. Koga and H. Ohigashi, “Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers.” J. Appl. Phys., Vol. 59, pp. 2142-2150, 1986.
38. S. Brooks and P. Heyliger, “Static behavior of piezoelectric laminates with distributed and patched actuators.” Journal of Intelligent Material systems and structures. Vol. 5, pp.635-646, 1994.
39. R. L. Goldberg, M. J. Jurgents, D. M. Mills, C. S. Henrique, D. Vaughan and S. W. Smith, “Modeling of piezoelectric multilayer ceramics using finite element analysis” IEEE Trans. On Ultrason. Ferroelec, and Frequency Contr. Vol. 44, no.6, pp.1204-1210, Nov. 1997.
40. Q. Meng, M. J. Jurgents and K. Deng, “Modeling of the electromechanical performance of piezoelectric laminated microactuators” Journal of Micromech. Microeng, Vol. 3, pp.18-23, 1993.
41. 林宗賢, “具加強環之雙跨距複合圓柱薄殼之振動分析,” 成功大學工程科學系碩士論文,2004.
42. 吳東旻, “具壓電加強環之雙跨距複合圓柱薄殼之振動分析,” 成功大學工程科學系碩士論文,2006.
校內:立即公開