| 研究生: |
邱証彥 Ciou, Jheng Yan |
|---|---|
| 論文名稱: |
鐵電負電容雙閘極鰭式場效電晶體數值模擬及理論推演 Modeling and Simulation of Negative Capacitance Double-Gate FinFET via TCAD |
| 指導教授: |
盧達生
Lu, Darsen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 負電容 、鐵電材料極化 、SS小於60mv/dec |
| 外文關鍵詞: | Negative capacitance, Ferroelectric polarization, Steep SS |
| 相關次數: | 點閱:106 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵電材料在特定的狀態下會產生負電容,負電容金氧半場效電晶體是利用在傳統的電晶體閘極結構上加上一層鐵電層,在室溫下MOSFET受到Boltzmann tyranny 的物理極限限制使得其次臨界擺幅(SS)最小只能降到60mv/dec,而負電容的發現及應用突破了此物理極限,因為鐵電層可借由產生閘極端的負值電容改變了閘極的電容分壓特性進而使body factor (m) 小於1促使SS小於60mv/dec。
為了驗證鐵電殛化效應是否能產生負值電容,我們利用TCAD 2016版中的鐵電model 來實現這部分的理論驗證,而得到了相關的結果以及數值,接下來我們深入探討了負電容對於DG-FinFET元件的電性影響從中比較加了鐵電極化效應以及不加鐵電極化效應的差別,元件的微縮一直是MOSFT元件中一個重要的研究方向,在我們的模擬中我們也透過一系列的Channel Length 微縮來觀察負電容對於線寬微縮元件的影響,並且在最後也做了一些理論的佐證及解釋。
Ferroelectric (FE) material can perform negative capacitance (NC) under certain conditions. In the conventional MOSFET stack, the ferroelectric film with NC effect on the gate structure. It will be the NCFET. MOSFET devices have been limited by Boltzmann tyranny, so the least subthreshold swing value of the conventional MOSFET is 60mv/dec. In order to overcome this limitation, Professor S. Salahuddin of UC Berkeley invented the NC concept applied to the MOSFET technology. Because the gate-stack NC can amplify the gate voltage and then make the body factor (m) smaller than 1, the SS can be smaller than 60mv/dec.
The first step in our simulation is to verify that the FE polarization effect can generate negative capacitance. In order to do this, we use the TCAD 2016 version ferroelectric model to do the C-V curve simulation. This way, we can obtain the negative capacitance value. In the following simulation, we intend to explore the influence of NC capacitance on the DG-FinFET. The MOSFET channel length scaling is always an important research decision. Therefore, we also conduct a series of simulations of NC DG-FinFET channel length scaling. These simulations help explore the relation between NC and the short channel effect. Finally, we also make use of the theoretical model to explain and verify our TCAD simulation result.
References
[1] S. Takagi, T. Iisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, et al., "Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance," IEEE Transactions on Electron Devices, vol. 55, pp. 21-39, 2008.
[2] A. Padilla, Y. Chun Wing, C. Shin, C. Hu, and L. Tsu-Jae King, "Feedback FET: A novel transistor exhibiting steep switching behavior at low bias voltages," in 2008 IEEE International Electron Devices Meeting, 2008, pp. 1-4.
[3] Y. Chun Wing, P. Alvaro, L. Tsu-Jae King, and H. Chenming, "Programming characteristics of the steep turn-on/off feedback FET (FBFET)," in 2009 Symposium on VLSI Technology, 2009, pp. 176-177.
[4] E. Gnani, S. Reggiani, A. Gnudi, and G. Baccarani, "Steep-slope nanowire FET with a superlattice in the source extension," Solid-State Electronics, vol. 65-66, pp. 108-113, 2011/11/01/ 2011.
[5] E. Gnani, P. Maiorano, S. Reggiani, A. Gnudi, and G. Baccarani, "An investigation on steep-slope and low-power nanowire FETs," in 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2011, pp. 299-302.
[6] M. Büttiker, Y. Imry, and R. Landauer, "Josephson behavior in small normal one-dimensional rings," Physics Letters A, vol. 96, pp. 365-367, 1983/07/18/ 1983.
[7] K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, "Impact ionization MOS (I-MOS)-Part I: device and circuit simulations," IEEE Transactions on Electron Devices, vol. 52, pp. 69-76, 2005.
[8] A. A. Moolji, S. R. Bahl, and J. A. d. Alamo, "Impact ionization in InAlAs/InGaAs HFET's," IEEE Electron Device Letters, vol. 15, pp. 313-315, 1994.
[9] K. Takao, T. Kyozi, and K. Keizo, "Substrate Current due to Impact Ionization in MOS-FET," Japanese Journal of Applied Physics, vol. 15, p. 1127, 1976.
[10] K. Hei, D. T. Lee, R. T. Howe, and K. Tsu-Jae, "A new nano-electro-mechanical field effect transistor (NEMFET) design for low-power electronics," in IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., 2005, pp. 463-466.
[11] K. Boucart and A. M. Ionescu, "Double-Gate Tunnel FET With High-κ Gate Dielectric," IEEE Transactions on Electron Devices, vol. 54, pp. 1725-1733, 2007.
[12] J. Knoch and J. Appenzeller, "Modeling of High-Performance p-Type III–V Heterojunction Tunnel FETs," IEEE Electron Device Letters, vol. 31, pp. 305-307, 2010.
[13] S. Salahuddin and S. Datta, "Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?," in 2008 IEEE International Electron Devices Meeting, 2008, pp. 1-4.
[14] A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, et al., "Negative capacitance in a ferroelectric capacitor," Nature Materials, vol. 14, p. 182, 12/15/online 2014.
[15] Salahuddin, " S. Negative Capacitance in a Ferroelectric−Dielectric Heterostructure for Ultra Low-Power Computing. " Proc. SPIE 2012, 8461, 846111.
[16] S. Salahuddin and S. Datta, "Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices," Nano Letters, vol. 8, pp. 405-410, 2008/02/01 2008.
[17] Kobayashi, Masaharu, and Toshiro Hiramoto. "On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2 V supply voltage with ferroelectric HfO2 thin film." AIP Advances 6.2 (2016): 025113.
[18] H. Lee, Y. Yoon, and C. Shin, "Current-Voltage Model for Negative Capacitance Field-Effect Transistors," IEEE Electron Device Letters, vol. 38, pp. 669-672, 2017.
[19] C. Hu, S. Salahuddin, C. I. Lin, and A. Khan, "0.2V adiabatic NC-FinFET with 0.6mA/µm I<inf>ON</inf> and 0.1nA/µm I<inf>OFF</inf>," in 2015 73rd Annual Device Research Conference (DRC), 2015, pp. 39-40.
[20] K. S. Li, P. G. Chen, T. Y. Lai, C. H. Lin, C. C. Cheng, C. C. Chen, et al., "Sub-60mV-swing negative-capacitance FinFET without hysteresis," in 2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp. 22.6.1-22.6.4.
[21] M. H. Lee, S. T. Fan, C. H. Tang, P. G. Chen, Y. C. Chou, H. H. Chen, et al., "Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs," in 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp. 12.1.1-12.1.4.
[22] J. Müller et al., “Ferroelectricity in yttrium-doped hafnium oxide,”J. Appl. Phys., vol. 110, no. 11, p. 114113, Dec. 2011.
[23] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors," in 2011 International Electron Devices Meeting, 2011, pp. 24.5.1-24.5.4.
[24] Stefan Mueller , * Johannes Mueller , Aarti Singh , Stefan Riedel , Jonas Sundqvist ,
Uwe Schroeder , and Thomas Mikolajick “Incipient Ferroelectricity in Al-Doped HfO 2 Thin Films” Adv. Funct. Mater. 2012, 22, 2412–2417.
[25] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, et al., "Ferroelectricity in Simple Binary ZrO2 and HfO2," Nano Letters, vol. 12, pp. 4318-4323, 2012/08/08 2012.
[26] M. H. Lee, Y. T. Wei, K. Y. Chu, J. J. Huang, C. W. Chen, C. C. Cheng, et al., "Steep Slope and Near Non-Hysteresis of FETs With Antiferroelectric-Like HfZrO for Low-Power Electronics," IEEE Electron Device Letters, vol. 36, pp. 294-296, 2015.
[27] M. H. Lee, Y. T. Wei, C. Liu, J. J. Huang, M. Tang, Y. L. Chueh, et al., "Ferroelectricity of HfZrO<sub>2</sub> in Energy Landscape With Surface Potential Gain for Low-Power Steep-Slope Transistors," IEEE Journal of the Electron Devices Society, vol. 3, pp. 377-381, 2015.
[28] C. Hu, S. Salahuddin, C.-I. Lin, and A. Khan, "0.2 V adiabatic NC-FinFET with 0.6 mA/µm I ON and 0.1 nA/µm I OFF," pp. 39-40.
[29] M. Kobayashi and T. Hiramoto, "On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2 V supply voltage with ferroelectric HfO2 thin film," AIP Advances, vol. 6, p. 025113, 2016
[30] M. H. Lee, Y. T. Wei, K. Y. Chu, J. J. Huang, C. W. Chen, C. C. Cheng, et al., "Steep slope and near non-hysteresis of FETs with antiferroelectric-like HfZrO for low-power electronics," IEEE Electron Device Letters, vol. 36, pp. 294-296, 2015
[31] Sentaurus User Guide, L-2016-03, Mar 2016
[32] Sentaurus User Guide, L-2016-03, Mar 2017
[33] P.-C. Chiu and V. P.-H. Hu, "Analysis of subthreshold swing and internal voltage amplification for hysteresis-free negative capacitance FinFETs," pp. 134-135.
[34] H.-P. Lee and P. Su, "Suppressed Fin-LER Induced Variability in Negative Capacitance FinFETs," IEEE Electron Device Letters, vol. 38, pp. 1492-1495, 2017
[35] C. Hu, D. D. Lu, and Y. S. Chauhan, "FinFET modeling for IC simulation and design," 2015