簡易檢索 / 詳目顯示

研究生: 邱証彥
Ciou, Jheng Yan
論文名稱: 鐵電負電容雙閘極鰭式場效電晶體數值模擬及理論推演
Modeling and Simulation of Negative Capacitance Double-Gate FinFET via TCAD
指導教授: 盧達生
Lu, Darsen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 74
中文關鍵詞: 負電容鐵電材料極化SS小於60mv/dec
外文關鍵詞: Negative capacitance, Ferroelectric polarization, Steep SS
相關次數: 點閱:106下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵電材料在特定的狀態下會產生負電容,負電容金氧半場效電晶體是利用在傳統的電晶體閘極結構上加上一層鐵電層,在室溫下MOSFET受到Boltzmann tyranny 的物理極限限制使得其次臨界擺幅(SS)最小只能降到60mv/dec,而負電容的發現及應用突破了此物理極限,因為鐵電層可借由產生閘極端的負值電容改變了閘極的電容分壓特性進而使body factor (m) 小於1促使SS小於60mv/dec。
    為了驗證鐵電殛化效應是否能產生負值電容,我們利用TCAD 2016版中的鐵電model 來實現這部分的理論驗證,而得到了相關的結果以及數值,接下來我們深入探討了負電容對於DG-FinFET元件的電性影響從中比較加了鐵電極化效應以及不加鐵電極化效應的差別,元件的微縮一直是MOSFT元件中一個重要的研究方向,在我們的模擬中我們也透過一系列的Channel Length 微縮來觀察負電容對於線寬微縮元件的影響,並且在最後也做了一些理論的佐證及解釋。

    Ferroelectric (FE) material can perform negative capacitance (NC) under certain conditions. In the conventional MOSFET stack, the ferroelectric film with NC effect on the gate structure. It will be the NCFET. MOSFET devices have been limited by Boltzmann tyranny, so the least subthreshold swing value of the conventional MOSFET is 60mv/dec. In order to overcome this limitation, Professor S. Salahuddin of UC Berkeley invented the NC concept applied to the MOSFET technology. Because the gate-stack NC can amplify the gate voltage and then make the body factor (m) smaller than 1, the SS can be smaller than 60mv/dec.
    The first step in our simulation is to verify that the FE polarization effect can generate negative capacitance. In order to do this, we use the TCAD 2016 version ferroelectric model to do the C-V curve simulation. This way, we can obtain the negative capacitance value. In the following simulation, we intend to explore the influence of NC capacitance on the DG-FinFET. The MOSFET channel length scaling is always an important research decision. Therefore, we also conduct a series of simulations of NC DG-FinFET channel length scaling. These simulations help explore the relation between NC and the short channel effect. Finally, we also make use of the theoretical model to explain and verify our TCAD simulation result.

    Content 摘要 ii Abstract iii Content iv Figure captions v Table captions x Chapter 1 Background 1 1.1 Power Consumption issue in Advanced CMOS 1 1.2 Subthreshold Swing Definition 3 1.3 Sub-60 Devices 4 1.3.1 Feedback FETs (FBFETs) 4 1.3.2 Superlattice MOSFET (SL-MOSFET) 5 1.3.3 Impact Ionization FETs (IMOS) 5 1.3.4 Nano Mechanical FETs (NEMFETs) 6 1.3.5 Tunnel FETs (TFETs) 6 1.3.6 Ferroelectric gate dielectric FET (NC-FET) 7 Chapter 2 Literature Review 8 2.1 Negative capacitance theory derivation and modeling 8 2.2 Negative capacitance device manufacturing 19 2.3 Introduction to the characteristics of a ferroelectric material 31 Chapter 3 Introduction to the TCAD Setting 36 3.1 Introduction to the device structure 36 3.2 the TCAD ferroelectric model before version 2017.09 38 3.3 TCAD version 2017.09 (L-K equation) 40 Chapter 4 Simulation Results and Discussion 43 4.1 A simulation of a ferroelectric MIS structure 43 4.2 The P-V curve least square fitting extracts the FE parameter 45 4.2 Device structure and simulation parameters 47 4.3 The gate stack capacitance analysis of NC-FET 48 4.5 Negative Capacitance Impact versus Channel Length 51 4.6 Impact of drain bias on negative capacitance 59 Chapter 5 63 Conclusions 63 Chapter6 64 Question and Answer 64 Prof. Kao: 64 Prof. Lin: 64 Prof. Chu: 65 Chapter 7 66 References 66 Appendix 69 Figure captions Fig. 1.1 Schematic log Id-Vg characteristics showing the factors affecting power consumption [1]. 2 Fig. 2.1. (a) The energy landscape of a negative capacitor. (b) The energy landscape of a typical capacitor [13]. 8 Fig. 2.2. An energy dynamic energy state diagram of a ferroelectric capacitor showing the transient analysis [14]. 9 Fig. 2.3. Schematic of a ferroelectric/dielectric bi-layer [15]. 10 Fig. 2.4. An ordinary capacitor with the right amount of capacitance can stabilize a ferroelectric material where its capacitance is negative [15]. 11 Fig. 2.5. The broken line shows the negative dP/dE region that is normally unstable but is effectively stabilized when placed in a series with a normal capacitor [16]. 12 Fig. 2.6. A simple NC-FET structure. The insulator is a ferroelectric material [16]. 13 Fig.2.7. The surface potential amplification versus the ferroelectric layer thickness [16]. 14 Fig. 2.8. (a) A schematic of a P-E curve and a channel load line as a function of Vg. A cross point of these two curves is the static operational point of the NCFET. (b) Demonstrates the operational points (i), (ii), and (iii) represents low, middle, and high Vg, respectively. The corresponding band diagrams in (b) [17]. 15 Fig. 2.9. Id versus VGS for various TFEs of the NCFET [18]. 16 Fig. 2.10. CFE and CMOS. Internal gate voltage VMOS is amplified over VG by CFE/(CFE-CMOS). CFE has to be close to CMOS [19]. 17 Fig. 2.11. A 5.8nm FE film brings CFE closer to CMOS (see Fig. 2-10) and reduces V DD. A 7nm FE film causes hysteresis because CFE crosses CMOS [19]. 17 Fig. 2.12. P-E characteristics (a-i) at fixed Ec and variable Pr and (a-ii) at fixed Pr and variable Ec. (b-i and ii) Id-Vg characteristics of NCFETs corresponding to the P-E characteristics [17]. 18 Fig. 2.13. The schematic structure of an NC-FinFET with an internal gate [20]. 19 Fig. 2.14. The graphic process flow of NC-FinFET [20]. 20 Fig. 2.15. The more details about the process flow. [20]. 20 Fig. 2-16 (a) The TEM picture of the planar HfZrO capacitor and (b) the gate-stack structure of an NC-FinFET [20]. 21 Fig. 2.17. IV measurement on a planar capacitor extracts the FE polarization. [20]. 21 Fig. 2.18 The Id-Vg curve of an internal gate FinFET (conventional FinFET). 22 Fig. 2.19. The Id-Vg curve of an external gate NC-nFET [20] 22 Fig. 2.20 The HZO has better ferroelectric characteristic after higher temperature annealing because the high temperature makes thin film form the orthorhombic face easily [20]. 23 Fig. 2.21. Id-Vg curve of N-type NC-FinFET and internal FinFET with 600C annealing [20]. 24 Fig. 2.22. Comparison of subthreshold swing, SS, for N-type NC-FinFET and internal FinFET [20]. 24 Fig. 2.23. 25 Fig. 2.24. Comparison of subthreshold swing, SS, for P-type NC-FinFET and internal FinFET [20]. 25 Fig. 2.25. Gate leakage versus capacitance equivalent thickness. The right corner graph demonstrates the I-V curve of a 1.5-nm-thick ferroelectric HZO [20]. 26 Fig.2.26. (a) Cross-sectional TEM of FEHZO with ~1.5 nm and 1-2 monolayer SiO2. (b) C-V of the MIS structure [20]. 27 Fig. 2.27. Id-Vg curve of 1.5-nm-thick ferroelectric HZO gate-stack FETs after RTA process at 700°C. The SSmin = 52 mV/dec [20]. 27 Fig. 2.28. Capacitance versus Q of Si MOS and 1.5, 3, and 5nm-thick FE-HZO. The capacitances are extracted by the L-K model [21]. 28 Fig. 2.29. Transfer characteristics (IDSVGS) of FEHZO FETs with 3, 5, and 7 nm gate-stack thin film with RTA at 700°C. The thinner FE-HZO film can improve hysteresis [21]. 29 Fig. 2.30. SS and hysteresis window (ΔVT) versus FEHZO thickness. The 1.5-nm-thick ferroelectric HZO can achieve the goal of both SS < 60mV/dec and less hysteresis [21]. 29 Fig. 2.31. Simulated fast sweep IDSVGS of a 1.5nm FE-HZO gate-stack FET as the sweeping frequency increase the hysteresis also increase [21]. 30 Fig .2.32. Calculated hysteresis versus. sweep time for a 1.5-nm-thick gate-stack ferroelectric HZO with Vds=0.5V [21]. 31 Fig. 2.33. shows different component of 9nm HZO thin film which has different ferroelectric characteristic. The pure HfO2 thin film shows paraelectric characteristic. The pure ZrO2 has antiferroelectric characteristic. [25]. 32 Fig. 2.34.HZO Polarization loops with (a) as-deposited shows para-electric type for a linear polarization, (b) 450 ◦C annealing shows the FE type, (c) 600 ◦C annealing shows the AFE type, and (d) 800 ◦C annealing becomes resistant due to high leakage. [27]. 33 Fig. 2.35. Schematic of (a) paraelectric, (b) ferroelectric, (c) anti-ferroelectric, and (d) ferroelectric behavior according to the electron leakage path [27]. 34 Fig. 2.36. Energy landscape (U-P) and its derivative (dU/dP) of HZO thin film with (a) as-deposited, (b) 450◦C, and (c) 600◦C. Note that the free energy is extracted from the P-E curve and is based on Landau–Khalatnikov (LK) equations. The dU/dP of AFE HZO (600◦C) exhibits a localized negative slope and indicates the existence of the NC component [27] 34 Fig. 3.1. (a) The simulated three-dimensional NC double gate Fin-FET with variable channel lengths Lc (100 nm ~ 25nm). Fin width Wfin=15nm; fin height Hfin =30nm. (b) A schematic diagram of the gate- stack structure. 36 Fig. 4.1. The MIS structure and the setting of the ferroelectric physical mechanism implemented as the code on the right hand side 43 Fig. 4.2. The Q-V curve of the MIS structure. The black line represents the FE layer with the ferroelectric mechanism. The red line represents the FE layer without the ferroelectric mechanism. 44 Fig.4.3. The least square fitting result 46 Fig. 4.5. Equivalent circuit for the gate-stack and channel capacitance, Ctotal represents the total gate capacitance considering CFE. 48 Fig. 4.6. The gate C-V curve simulation result for gate stacks with three different interfacial oxide thicknesses. The same symbol type corresponds to the same interfacial oxide thickness. The solid symbols are C-V with negative capacitance effects; the hollow symbols are C-V without considering CFE by intentionally switching off ferroelectric polarization in TCAD. 50 Fig.4.7. Graph of 1/Ctotal versus 1/Cox for three different oxide thickness conditions. CFE. is extracted based-on the inverse of the extrapolated y-intercept of this curve (-6.2554x 10-17 F). Vg=1.0V 50 Fig. 4.8. (a) The Id-Vg curve comparison at a channel length of 100nm 51 Fig. 4.9. (b) The Id-Vg curve comparison at a channel length of 90nm 51 Fig. 4.10. (c) The Id-Vg curve comparison at a channel length of 80nm 51 Fig. 4.11. (d) The Id-Vg curve comparison at a channel length of 70nm 52 Fig. 4.12. (e) The Id-Vg curve comparison at a channel length of 60nm 52 Fig. 4.13. (f) The Id-Vg curve comparison at a channel length of 50nm 52 Fig. 4.14. (g) The Id-Vg curve comparison at a channel length of 40nm 53 Fig. 4.15. (h) The Id-Vg curve comparison at a channel length of 30nm 53 Fig. 4.16. (i) The Id-Vg curve comparison at a channel length of 25nm 53 Fig. 4.17. Subthreshold swing versus channel length, with and without turning on ferroelectric polarization effects in TCAD. The percentage decrease in the subthreshold swing is labeled and pointed out using broken blue arrows. 54 Fig.4.18. The schematic equivalent capacitance component model considering the drain capacitance 55 Fig. 4.19. Calibration result for SS as function of channel length. The TCAD data is the same as that in Fig. 4.7 The blue and red lines are model predictions. 57 Fig. 4.20. The ion versus the channel length 58 Fig. 4.21. (a) The impact of different applying drain biases at Lc =100nm with and without FE polarization 59 Fig. 4.21. (b) The impact of different applying drain biases at Lc =90nm with and without FE polarization 59 Fig. 4.21. (c) The impact of different applying drain biases at Lc =80nm with and without FE polarization 60 Fig. 4.21. (d) The impact of different applying drain biases at Lc =70nm with and without FE polarization 60 Fig. 4.21. (e) The impact of different applying drain biases at Lc =60nm with and without FE polarization 60 Fig. 4.21. (f) The impact of different applying drain biases at Lc =50nm with and without FE polarization 61 Fig. 4.21. (g) The impact of different applying drain biases at Lc =40nm with and without FE polarization 61 Fig. 4.21. (g) The impact of different applying drain biases at Lc =30nm with and without FE polarization 61 Fig. 4.21. (g) The impact of different applying drain biases at Lc =25nm with and without FE polarization 62 Table captions Table 4.1 The NC-FinFET parameter used in the TCAD simulation 47

    References
    [1] S. Takagi, T. Iisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, et al., "Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance," IEEE Transactions on Electron Devices, vol. 55, pp. 21-39, 2008.
    [2] A. Padilla, Y. Chun Wing, C. Shin, C. Hu, and L. Tsu-Jae King, "Feedback FET: A novel transistor exhibiting steep switching behavior at low bias voltages," in 2008 IEEE International Electron Devices Meeting, 2008, pp. 1-4.
    [3] Y. Chun Wing, P. Alvaro, L. Tsu-Jae King, and H. Chenming, "Programming characteristics of the steep turn-on/off feedback FET (FBFET)," in 2009 Symposium on VLSI Technology, 2009, pp. 176-177.
    [4] E. Gnani, S. Reggiani, A. Gnudi, and G. Baccarani, "Steep-slope nanowire FET with a superlattice in the source extension," Solid-State Electronics, vol. 65-66, pp. 108-113, 2011/11/01/ 2011.
    [5] E. Gnani, P. Maiorano, S. Reggiani, A. Gnudi, and G. Baccarani, "An investigation on steep-slope and low-power nanowire FETs," in 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2011, pp. 299-302.
    [6] M. Büttiker, Y. Imry, and R. Landauer, "Josephson behavior in small normal one-dimensional rings," Physics Letters A, vol. 96, pp. 365-367, 1983/07/18/ 1983.
    [7] K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, "Impact ionization MOS (I-MOS)-Part I: device and circuit simulations," IEEE Transactions on Electron Devices, vol. 52, pp. 69-76, 2005.
    [8] A. A. Moolji, S. R. Bahl, and J. A. d. Alamo, "Impact ionization in InAlAs/InGaAs HFET's," IEEE Electron Device Letters, vol. 15, pp. 313-315, 1994.
    [9] K. Takao, T. Kyozi, and K. Keizo, "Substrate Current due to Impact Ionization in MOS-FET," Japanese Journal of Applied Physics, vol. 15, p. 1127, 1976.
    [10] K. Hei, D. T. Lee, R. T. Howe, and K. Tsu-Jae, "A new nano-electro-mechanical field effect transistor (NEMFET) design for low-power electronics," in IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., 2005, pp. 463-466.
    [11] K. Boucart and A. M. Ionescu, "Double-Gate Tunnel FET With High-κ Gate Dielectric," IEEE Transactions on Electron Devices, vol. 54, pp. 1725-1733, 2007.
    [12] J. Knoch and J. Appenzeller, "Modeling of High-Performance p-Type III–V Heterojunction Tunnel FETs," IEEE Electron Device Letters, vol. 31, pp. 305-307, 2010.
    [13] S. Salahuddin and S. Datta, "Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?," in 2008 IEEE International Electron Devices Meeting, 2008, pp. 1-4.
    [14] A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, et al., "Negative capacitance in a ferroelectric capacitor," Nature Materials, vol. 14, p. 182, 12/15/online 2014.
    [15] Salahuddin, " S. Negative Capacitance in a Ferroelectric−Dielectric Heterostructure for Ultra Low-Power Computing. " Proc. SPIE 2012, 8461, 846111.
    [16] S. Salahuddin and S. Datta, "Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices," Nano Letters, vol. 8, pp. 405-410, 2008/02/01 2008.
    [17] Kobayashi, Masaharu, and Toshiro Hiramoto. "On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2 V supply voltage with ferroelectric HfO2 thin film." AIP Advances 6.2 (2016): 025113.
    [18] H. Lee, Y. Yoon, and C. Shin, "Current-Voltage Model for Negative Capacitance Field-Effect Transistors," IEEE Electron Device Letters, vol. 38, pp. 669-672, 2017.
    [19] C. Hu, S. Salahuddin, C. I. Lin, and A. Khan, "0.2V adiabatic NC-FinFET with 0.6mA/µm I<inf>ON</inf> and 0.1nA/µm I<inf>OFF</inf>," in 2015 73rd Annual Device Research Conference (DRC), 2015, pp. 39-40.
    [20] K. S. Li, P. G. Chen, T. Y. Lai, C. H. Lin, C. C. Cheng, C. C. Chen, et al., "Sub-60mV-swing negative-capacitance FinFET without hysteresis," in 2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp. 22.6.1-22.6.4.
    [21] M. H. Lee, S. T. Fan, C. H. Tang, P. G. Chen, Y. C. Chou, H. H. Chen, et al., "Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs," in 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp. 12.1.1-12.1.4.
    [22] J. Müller et al., “Ferroelectricity in yttrium-doped hafnium oxide,”J. Appl. Phys., vol. 110, no. 11, p. 114113, Dec. 2011.
    [23] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors," in 2011 International Electron Devices Meeting, 2011, pp. 24.5.1-24.5.4.
    [24] Stefan Mueller , * Johannes Mueller , Aarti Singh , Stefan Riedel , Jonas Sundqvist ,
    Uwe Schroeder , and Thomas Mikolajick “Incipient Ferroelectricity in Al-Doped HfO 2 Thin Films” Adv. Funct. Mater. 2012, 22, 2412–2417.
    [25] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, et al., "Ferroelectricity in Simple Binary ZrO2 and HfO2," Nano Letters, vol. 12, pp. 4318-4323, 2012/08/08 2012.
    [26] M. H. Lee, Y. T. Wei, K. Y. Chu, J. J. Huang, C. W. Chen, C. C. Cheng, et al., "Steep Slope and Near Non-Hysteresis of FETs With Antiferroelectric-Like HfZrO for Low-Power Electronics," IEEE Electron Device Letters, vol. 36, pp. 294-296, 2015.
    [27] M. H. Lee, Y. T. Wei, C. Liu, J. J. Huang, M. Tang, Y. L. Chueh, et al., "Ferroelectricity of HfZrO<sub>2</sub> in Energy Landscape With Surface Potential Gain for Low-Power Steep-Slope Transistors," IEEE Journal of the Electron Devices Society, vol. 3, pp. 377-381, 2015.
    [28] C. Hu, S. Salahuddin, C.-I. Lin, and A. Khan, "0.2 V adiabatic NC-FinFET with 0.6 mA/µm I ON and 0.1 nA/µm I OFF," pp. 39-40.
    [29] M. Kobayashi and T. Hiramoto, "On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2 V supply voltage with ferroelectric HfO2 thin film," AIP Advances, vol. 6, p. 025113, 2016
    [30] M. H. Lee, Y. T. Wei, K. Y. Chu, J. J. Huang, C. W. Chen, C. C. Cheng, et al., "Steep slope and near non-hysteresis of FETs with antiferroelectric-like HfZrO for low-power electronics," IEEE Electron Device Letters, vol. 36, pp. 294-296, 2015
    [31] Sentaurus User Guide, L-2016-03, Mar 2016
    [32] Sentaurus User Guide, L-2016-03, Mar 2017
    [33] P.-C. Chiu and V. P.-H. Hu, "Analysis of subthreshold swing and internal voltage amplification for hysteresis-free negative capacitance FinFETs," pp. 134-135.
    [34] H.-P. Lee and P. Su, "Suppressed Fin-LER Induced Variability in Negative Capacitance FinFETs," IEEE Electron Device Letters, vol. 38, pp. 1492-1495, 2017
    [35] C. Hu, D. D. Lu, and Y. S. Chauhan, "FinFET modeling for IC simulation and design," 2015

    下載圖示 校內:2019-12-31公開
    校外:2019-12-31公開
    QR CODE