簡易檢索 / 詳目顯示

研究生: 李誌育
Li, Jhin-Yu
論文名稱: 應用於燃料與太陽能電池發電系統之模糊控制器研製
Design and Implementation of Fuzzy Controller for Fuel Cell and Photovoltaic Generation Systems
指導教授: 林志隆
Lin, Chih-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 72
中文關鍵詞: 模糊控制系統最大功率追蹤電壓穩定
外文關鍵詞: Fuzzy control system, maximum power point tracking, voltage stability
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池與太陽能皆為乾淨零排放的能源技術,在未來的電能供應角色上相當被重視,因此許多先進國家投入鉅資開發,來降低對石化能源及核能的依賴。這兩種能源系統皆須搭配直流/直流轉換器與良好控制器來使它發揮最大的效益。
    本論文主旨是以模糊控制器為控制架構,於燃料電池的混合供電系統中建立模糊滑動平面控制演算法,根據不同負載以及在操作中負載切換時,此演算法可達到穩定輸出電壓。經由數位訊號處理器(DSP)實驗結果可以證實模糊滑動平面控制在規則庫縮減為傳統模糊控制器的平方根倍,故實現於場域可程式邏輯閘陣列(FPGA)時,可降低在合成邏輯閘之數目。從FPGA實際量測的結果,控制演算法已成功導入此系統且也達到穩定輸出電壓值。之後將該演算法在數位工作站進行模擬與測試,根據暫存器傳輸級模擬結果與我們的設計相符。
    太陽能供電系統中,最大功率追蹤演算法的效能會決定整個太陽能系統之輸出效率。其中,擾動觀察法與增量電導法很常被使用在太陽能系統,但是這兩種演算法追蹤速度比較慢以及會在最大功率點震盪而導致功率損耗與系統不穩定。因此第一型模糊控制被應用於增加追蹤速度以及減少穩態震盪的情況,但無法抑制雜訊的干擾。故本論文最大功率追蹤演算法採用區間第二型模糊控制,此演算法追蹤速度較快以及能夠抑制雜訊的干擾。經由實驗結果,於最大功率追蹤部分本文在固定日射量的轉換效率可達98.9%,動態情況下可達到99.2%,皆較傳統演算法為佳,因此使整體太陽能系統的轉換效能提高許多。

    The fuel cell and photovoltaic (PV) play important roles in the future of power supply because they are clean and zero-radiation energy sources. Therefore, many advanced countries have invested heavily in these technologies to reduce the dependence on fossil fuels or nuclear energy. To maximize effectiveness, the two energy sources need to be combined with DC/DC converter and digital controller.
    This work employs fuzzy logic control for hybrid fuel cell and PV power systems. In the hybrid fuel cell system, the fuzzy sliding surface control implemented through a digital signal processor is used to simplify the rule base and achieve stable output voltage under different load situations. Experimental results show that the output voltage of the hybrid fuel cell system is kept stable at a constant value even though the rule number is only a square root multiplied in relation to the standard fuzzy control. Because of the simpler rule base of the sliding surface fuzzy control, the gate count of logic synthesis with a field-programmable gate array (FPGA) can be reduced. Based on experimental results, fuzzy sliding surface control is successfully applied to a FPGA system to achieve stable output voltage. Subsequently, the proposed algorithm is simulated and tested on hybrid fuel cell systems in digital workstations. Simulation results based on the register transfer level (RTL) are highly consistent with our design target.
    In PV power systems, output efficiency is determined by the performance of maximum power point tracking (MPPT) algorithms. The perturbation and observation method (P&O) and the incremental conductance method (INC) are commonly adopted in PV power systems. The above methods have slower speeds for tracking the optimal operating point and exhibit continuous oscillation around the optimal operating point which leads to power loss and system instability. Therefore, type-1 fuzzy control has been introduced to increase tracking speeds and reduce the steady-state oscillation of P&O and INC algorithms. However, this fuzzy control cannot suppress the noise. Here, the interval type-2 fuzzy control algorithm is chosen for the MPPT because it provides faster tracking capability and prevents noise interference. Experimental results indicate that the efficiencies achieved by the interval type-2 fuzzy control algorithm are 98.9% under constant weather conditions and 99.2% under varying weather conditions, which are more effective compared to those of INC and type-1 fuzzy control algorithms.

    目錄 摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.2.1 燃料電池 3 1.2.2 太陽能 4 1.3 論文架構 6 第二章 模糊控制器介紹 7 2.1 第一型模糊邏輯控制 7 2.1.1 模糊集合 7 2.1.2 模糊化 8 2.1.3 模糊規則庫 10 2.1.4 模糊推論引擎 10 2.1.5 解模糊化 10 2.2 模糊滑動平面控制 11 2.3 第二型模糊邏輯控制 12 2.3.1 第二型模糊邏輯 12 2.3.2 區間第二型糢糊邏輯控制 14 第三章 混合供電系統控制與實驗結果 17 3.1 燃料電池原理與種類 17 3.1.1 燃料電池原理 17 3.1.2 燃料電池種類 18 3.2 混合供電系統架構 19 3.2.1 直流/直流雙向轉換器 20 3.2.2 混合供電系統之控制策略 24 3.3 混合供電系統之第一型模糊滑動平面設計 28 3.4 DSP系統設計 31 3.5 FPGA系統設計 34 3.6 系統量測結果 40 3.7 FPGA晶片下線之前置訊號模擬 50 第四章 太陽能系統控制與實驗結果 53 4.1 太陽能電池原理與特性 53 4.1.1 太陽能電池原理 53 4.1.2 太陽能電池特性簡介 54 4.2 太陽能系統架構 58 4.2.1 新型隔離型高升壓比直流/直流轉換器 59 4.2.2 最大功率追蹤演算法 59 4.3 最大功率追蹤之區間第二型模糊控制法則與設計 61 4.4 系統量測結果 64 第五章 結論與未來研究方向 67 5.1 結論 67 5.2 未來研究方向 68 參考文獻 69 

    [1] http://www.taipower.com.tw/, 2013年。
    [2] http://www.narl.org.tw/tw/, 2013年。
    [3] http://www.formosaimage.com/gallery2/main.php?g2_itemId=20344, 2013年。
    [4] W. S. Liu, J. F. Chen, T. J. Liang, R. L. Lin, and C. H. Liu, “Analysis, Design, and Control of Bidirectional Cascoded Configuration for a Fuel Cell Hybrid Power System,” IEEE Transactions on Power Electronics, vol. 25, no. 6, pp. 1565-1575, Jun. 2010.
    [5] W. S. Liu, J. F. Chen, T. J. Liang, and R. L. Lin, “Multi-Cascoded Sources for a High Efficiency Fuel Cell Hybrid Power System in High Voltage Application,” IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 931-942, Mar. 2011.
    [6] Y. Li and Z. Ji, “An Approach on T-S Fuzzy Model and Control of Buck-Boost Converter,” Proceedings of the 7th World Congress on Intelligent Control and Automation, pp. 91-96, Jun. 2008.
    [7] L. Guo, J. Y. Hung, and R. M. Nelms, “Evaluation of DSP-Based PID and Fuzzy Controllers for DC–DC Converters,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2237-2248, Jun. 2009.
    [8] P. Z. Lin, C. M. Lin, C. F. Hsu, and T. T. Lee, “Type-2 Fuzzy Controller Design Using a Sliding-Mode,” IEE Proc. Electr. Power Appl., vol. 152, no. 6, pp. 1482-1488, Nov. 2005.
    [9] C. F. Hsu, I. F. Chung, C. M. Lin, and C. Y. Hsu, “Self-Regulating Fuzzy Control for Forward DC–DC Converters Using an 8-bit Microcontroller,” IET Power Electron., vol. 2, no. 1, pp. 1-13, Jan. 2008.
    [10] C. Hua, J. Lin, and C. Shen, “Implementation of a DSP Controlled Photovoltaic System with Peak Power Tracking,” IEEE Transactions on Industrial Electronics, vol. 45, no. 1, pp. 99-107, Feb. 1998.
    [11] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum Photovoltaic Power Tracking: an Algorithm for Rapidly Changing Atmospheric Conditions,” IEEE proc. Gener. Transm. Distrib, vol. 142, no. 1, pp. 59-64, Jan. 1995.
    [12] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 963-973, Jul. 2005.
    [13] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439-449, Jun. 2007.
    [14] F. Lin, S. Duan, F. Lin, B. Lin, and Y. Kang, “A Variable Step Size INC MPPT Method for PV Systems,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2622-2628, Jul. 2008.
    [15] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, “Fuzzy-Logic-Control Approach of a Modified,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1022-1030, Apr. 2011.
    [16] 林育賢,“具最大功率功能之隔離型光伏並聯系統”,國立成功大學電機工程學系碩士論文,民國一百年。 
    [17] H. Hagras, “Type-2 FLCs: a New Generation of Fuzzy Controllers,” IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 30-43, Feb. 2007.
    [18] L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, no. 3, pp.338-353, Jun. 1965.
    [19] E. H. Mamdani and S. Assilian, “A Case Study on the Application of Fuzzy Set Theory to Automatic Control,” Proc. of IFAC Stochastic Control Symp., Budapest, 1974.
    [20] 曾憲輝,“智慧型晶片之設計”,高立圖書有限公司,民國八十八年。
    [21] S. W. Kim and J. J. Lee, “Design of a Fuzzy Controller with Fuzzy Sliding Surface,” Fuzzy Sets and Systems, vol. 71, no. 3, pp. 359-367, May. 1995.
    [22] C. H. Huand, C. H. Lee, K. J. Shih, and Y. J. Wang, “A Robust Technique for Frequency Estimation of Distorted Signals in Power Systems,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 8, pp. 2026-2036, Aug. 2010.
    [23] S. J. Huang and W. C. Lin, “Adaptive Fuzzy Controller With Sliding Surface for Vehicle Suspension Control,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 4, pp. 550-559, Aug. 2003.
    [24] J. M. Lin, S. J. Huang, and K. R. Shih, “Application of Sliding Surface-Enhanced Fuzzy Control for Dynamic State Estimation of a Power System,” IEEE Transactions on Power Systems, vol. 18, no. 2, pp. 570-577, May. 2003.
    [25] M. C. S. Cheng, “Dynamical Near Optimal Training for Interval Type-2 Fuzzy Neural Network (T2FNN) with Genetic Algorithm,” Griffith University, Brisbane, Australia, Mar. 2003.
    [26] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 Fuzzy Logic Systems,” IEEE Transactions on Fuzzy Systems, vol. 7, pp. 643-658, Dec. 1999.
    [27] Q. Liang and J. M. Mendel, “Interval Type-2 Fuzzy Logic Systems: Theory and Design,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 5, pp. 535-550, Oct. 2000.
    [28] J. M. Mendel, “Type-2 Fuzzy Sets and Systems: An Overview,” IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 20-29, Feb. 2007.
    [29] 沈家緯,“燃料電池之電力系統控制”,國立成功大學航空太空工程學系碩士論文,民國九十九年。
    [30] 王曉紅、黃宏,“燃料電池基礎”,全華書局出版,民國九十七年。
    [31] Z. Jiang, L. Gao, and R. A. Dougal, “Flexible Multiobjective Control of Power Converter in Active Hybrid Fuel Cell/Battery Power Sources,” IEEE Transaction on Power Electronics, vol. 20, no. 1, pp. 244-253, Jan. 2005.
    [32] 黃富胤,“肌電訊號辨識系統之數位晶片實作”,國立成功大學電機工程學系碩士論文,民國九十五年。
    [33] 吳財福、陳裕愷、張健軒,“太陽能光電能供電與照明系統”,全華書局出版,民國九十六年。
    [34] http://www2.wunan.com.tw/download/preview/5E52.PDF, 2013年。
    [35] S. M. Sze, “Semiconductor Devices Physics and Technology,” Bell Telephone Laboratories, Inc., 1985.
    [36] D. A. Neamen, “Semiconductor Physics and Devices,” Richard D. Irwin, Inc., 1992.

    無法下載圖示 校內:2015-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE