| 研究生: |
王彥程 Wang, Yen-Cheng |
|---|---|
| 論文名稱: |
集水區降雨引發新增崩塌地面積與其發生頻率之研究-以高屏溪上游集水區為例 A study on the relation between the landslide areas and their occurrence frequency for the newly increased landslides caused by rainfalls |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 崩塌 、河寬增量 、冪次定律 、自組織臨界 、莫拉克颱風 |
| 外文關鍵詞: | Landslide, River width widening, Power law, Self-organized critical, Typhoon Morakot |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以高屏溪上游集水區為研究區域,探討颱風降雨事件後集水區新增崩塌地面積及其發生頻率之關係。本研究分別選用2008年莫拉克颱風前後與2010年凡那比颱風前後之福衛二號衛星影像,並結合地理資訊系統來進行高屏溪上游集水區新增崩塌地的選取。結果顯示兩場颱風降雨都產生大量的新增崩塌地;以新增崩塌地面積當作事件之規模,發現崩塌面積大於0.1公頃的新增崩塌地面積及其發生頻率之關係符合冪次定律關係,說明了新增崩塌地面積及其發生頻率之間具有自組織臨界特性。在雙對數座標圖上,以新增崩塌地面積為橫坐標,以發生頻率為縱座標,其斜率β值代表新增崩塌地面積與發生頻率之變化率,斜率值越小代表崩塌發生頻率較高。本研究針對誘發因子(雨量)及地文因子(高程、坡度、地質及土地利用)對斜率β值之影響進行分析,結果顯示總累積雨量越大其對應到的斜率β值會越低;地文因子上在高程位於3,000-3,500m、坡度分類位於三、四級坡,地質分類於達見砂岩、大南澳片岩、西村層、佳陽層上及土地利用為草生地及裸露地的區域,其斜率β值在各類別下較低。本研究也探討集水區主流河道寬度增量及其發生頻率之關係,對研究區域內三條主要河流(旗山溪、荖濃溪及隘寮溪)以福衛影像進行主流河道寬度的判識,再以每100公尺切割一個斷面,針對河寬增量的發生規模與頻率進行探討,結果顯示發生規模大於100公尺河寬增量的發生頻率與規模呈現冪次關係,具有自組織臨界性。
The purpose of this study is to assess the different factor risk for the newly increasing landslides in the Gaoping River upstream watershed. The newly landslides was chosen within a geographic information system based on Formosa satellite II image analysis during typhoon Morakot and Fanapi. The power-law distribution was exhibited based on the magnitude-frequency statistics when landslide area over 0.1 ha. Therefore, this pattern suggested that the newly landslide in Gaoping River upstream watershed has self-organized critical. We recognized the β-value in the double-log diagram while landslide area in the x-axis and landslide frequency in the y-axis, and β-value was associated with the hazardous risks. We selected five probably causing landslide factor, including cumulative rainfall, elevation, gradient, lithology and land-use to assess the landslide risks .The results showed high cumulative rainfall, elevation between 3,000 to 3,500m, gradient in third and fourth gradient, geology setting in Tachien sandstone, Tananao schists and Nishimura formation, and land-use in grassland and uncover-land have the highest risk in the landslide occurrence .This study was also discussed the river-width widening in the Kaoping River watershed. We had characterized river-width widening (including Cishan, laonong, and Iliao River) after Typhoon Morakot disturbance interpreted from a temporal pair (2008 and 2009) image analysis, and the river-widths were extracted per 100 m along the river. The magnitude-frequency distribution of river-width widening over 100 m exhibited the power law, it showed that this pattern also has self-organized critical.
1. 中央氣象局網站,http://www.cwb.gov.tw。
2. 王雁平(2008),「崩塌因子對崩塌率及崩塌深度關係之研究」,國立中興大學水土保持學系碩士論文。
3. 行政院農委會水土保持局台南分局 (2010),「高屏溪流域上游坡地莫拉克風災整體復建規劃」。
4. 行政院農業委員會(2005),「水土保持手冊」。
5. 宋卫国、范维澄、汪秉宏 (2001),「中国森林火灾的自组织临界性」,科學通報,46(6)。
6. 李佳純 (2012),「降雨觸發崩塌的可能性評估研究-以高屏溪流域為例」,國立成功大學水利與海洋工程學系。
7. 李馨慈、王建力(2005),「台灣地區山崩規模與發生頻率之關係」,第二屆資源工程研討會論文集:416-419。
8. 李馨慈、陳時祖、魏秀珍、余騰鐸、王建力(2006),「曾文水庫集水區崩塌地調查與規模頻率分析」,岩盤工程研討會論文集 :409-418。
9. 林孟龍、林俊全(1999),「曾文水庫集水區山崩之規模與頻率分布關係之探討」,國立臺灣大學地理學系地理學報,26 :13-23。
10. 林慧姿、黃春松、廖平邁、張嘉容 (2001),「統計學」,新科技書局。
11. 范貴婷 (2006),「台灣森林火災自組織臨界性與空中滅火影響之研究」,開南管理學院空運管理學系碩士論文。
12. 張石角(1987),「山坡地潛在危險之預測及其在環境影響評估之應用」,中華水土保持學報,18(2): 41-62。
13. 許家銘 (2008),「濁口溪流域的地表作用與地質環境間之相對應關係」,國立臺灣大學地質科學研究所碩士論文。
14. 許蕙瑛 (2007),「台灣中部地區降雨誘發崩塌之影響因子研究」,國立中興大學土木工程學系碩士論文。
15. 郭靜苓 (2012),「台灣降雨誘發崩塌之特性分析」,國立中興大學水土保持學系所碩士論文。
16. 陳本康 (2004),「石門水庫集水區崩塌特性及潛勢評估研究」,國立中興大學水土保持學系博士論文。
17. 陳樹群、吳俊鋐、王雁平 (2010),「地震或降雨誘發崩塌之崩塌特性探討」,中華水土保持學報,41(2) :147-158。
18. 陳樹群、翁愷翎、吳俊鋐 (2010),「玉峰溪集水區崩塌特性與崩塌體積之探討」,中華水土保持學報,41(3) :217-229。
19. 陳樹群、郭靜苓、吳俊鋐 (2013),「西台灣強降雨誘發崩塌規模與區位之特性分析」,中華水土保持學報,44(1) :34-49。
20. 曾奕超、詹錢登、黃振全、陳國威、徐郁超、王志賢(2011),「莫拉克颱風期間坡地崩塌與水文、地文特性之分析-以高屏溪流域為例」,海峽兩岸水土保持與生態修復學術研討會。
21. 游繁結、林親義 (1983),「蘭陽溪流域地形數量因子與崩坍之關係探討」,中華水土保持學報,14 :47-57。
22. 溫振宇 (2005),「結合地震與颱風因子之山崩模式分析」,國立成功大學地球科學研究所碩士論文。
23. 經濟部水利署 (2009),「莫拉克颱風暴雨量及洪流量分析」。
24. 董倫政 (2002),「台北市近郊崩塌地調查及其附近地區土地利用適切性評估」,國立臺灣大學森林學研究所碩士論文。
25. 蔡雅婷 (2011),「屏東縣獅子村山地部落土地利用適宜性分析」,國立中興大學水土保持學系碩士論文。
26. 錢寧、張仁、周志德(1987),「河床演變學」,科學出版社。
27. 魏倫瑋 (2009),「台南菜寮溪河道的變化與其集水區流域之地層滑動及輸砂量之關係」,國立臺灣大學地質科學研究所碩士論文。
28. Bak, P., Tang, C. and Wiesenfeld, K. (1988) “Self-organized criticality”, Phys. Rev. A, 38: 364–374.
29. Barbour, J.R., Stark, C.P., Lin, C.W., Chen, H., Horng, M.J., Ko, C.P., Yi, T.C., Tsai, T.T., Chang, W.S., Lee, S.P. and Huang, C. (2009) “Magnitude-frequency distributions of boundary shear stress along a rapidly eroding bedrock river. ” Geophysical Research Letter, 36: 859-869.
30. Brierley, G.J. and Fryirs, K.A. (2005) “Geomorphology and River Management.” Application of the River Styles Framework, Australia.
31. Burridge, R. and Knopoff, L. (1967), “Model and theoretical seismicity.” Seism. Soc. Am. Bull. 57:341-371.
32. Chen, C.Y., Yu, F.C., Lin, S.C. and Cheung, K.W. (2007) “Discussion of landslide self-organized criticality and the initiation of debris flow.” Earth Surface Processes and Landforms. 32: 197-209.
33. Chen, P., Bai, T. and Li B. (2003) “The b-value and earthquake occurrence period.” Chinese journal of geophysics. 46(4) : 736-749.
34. Clarke, B.A. and Burbank, D.W. (2010) , “Bedrock fracturing, threshold hillslope, and limits to the magnitude of bedrock landslides.” Earth and Planetary Science Letters, 297: 577-586.
35. Crosta, G. B., Negro, P. D. and Frattini P. (2003) “Soil slips and debris flows on terraced slopes” Natural Hazards and Earth System Sciences,3: 31-42.
36. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D., and Lin, J.C. (2003) “Links between erosion, runoff variability and seismicity in the Taiwan orogen.” Nature, 426: 648-651.
37. Dadson., S. J., Hovius N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W., Horng, M.J., Chen, T.C., Milliman, J. and Stark, C.P. (2010), “Earthquake-triggered increase in sediment delivery from an active mountain belt” Geology, 32: 733-736.
38. Feigenbaum, J. A. and P. G. O. Freund. (1996), “Discrete Scale Invariance in Stock Markets before Crashes,” International Journal of Modern Physics ,B 10: 3737-3745.
39. Field, S., Witt, J., Nori, F., and Ling, X. (1995), “Superconducting vortex avalanches. ” Phys. Rev. Lett. 74: 1206-1209.
40. Frattini, P. and Crosta, G.B. (2013), “The role of material properties and landscape morphology on landslide size distributions.” Earth and Planetary Science Letters, 361: 310-319.
41. Fredlum, D. G. and H. Rahardjo. (1993), Soil Mechanic for Unsaturated Soils. John Wiley & sons.
42. Frissell, C. A., Liss, W. J., Warren, C. E. and Hurley MD. (1986) “A hierarchical framework for stream habitat classification: viewing streams in a watershed context. ” Environ. Manag. 12:199-214.
43. Frohlich, C. and Davis, S.D. (1993), “Teleseismic b Values; or, much Ado About 1.0”, J. Geophys. Res 98(B1): 631-644.
44. Fuyii, Y. (1969). “Frequency distribution of the magni-tude of the landslides caused by heavy rain-fall:Seismological.” Society of Japan Journal, 22: 244–247.
45. Glade, T. (2003). “Landslide occurrence as a response to land use change: a review of evidence from New Zealand.” Catena, 51: 297-314.
46. Gutenberg, B. and Richter, C. F. (1954) “Seismicity of the Earth and Associated Phenomenon”., Princeton University Press, Princeton, 2nd ed.
47. Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P. and Rossi,M. (2008) “Distribution of landslides in Upper Tiber River basin, central Italy. ” Geomorphology , 96: 105-122.
48. Guzzetti, F., Malamud, B. D., Turcotte, D. L. and Reichenbach, P. (2002) “Power-law correlations of landslide areas in central Italiy. ” Earth and Planetary Science Letters, 195: 169-183.
49. Hergarten, S. and Neugebauer, H.J. (1998) “Self-organized criticality in a landslide model.” Geophysical Research Letters, 25(6): 801-804.
50. Hovius, N., Stark C.P. and Allen P.A. (1997). “Sediment flux from a mountain belt derived by landslide mapping.” Geology , 25: 231-234.
51. Hovius, N., Stark, C. P., Chu, H. T., and Lin, J. C. (2000). “Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan.” Journal of Geology, 108: 73–89.
52. Keefer, D.K. and Larsen, M.C. (2007). “Assessing landslide hazards.” Sciences, 316: 1136-1137.
53. Keefer, D.K. (1984). “Landslides caused by earthquake.” Geological Society of America Bulletin, 95, :406–421.
54. Knighton, D. (1998) “Fluvial Form & Processes, 1st ed.” London: Edward Arnold.
55. Korup O. (2005) “Distribution of landslides in southwest New Zealand”, Landslides 1(2) :43-51.
56. Laurence, C.S. (1997) “Satellite remote sensing of river inundation area, stage, and discharge: A review.” Hydrological Processes. 11: 1427-1439.
57. Leopold, L. B., Wolman, M. G. and Miller, J. B. (1964). “Fluvial Processes in Geomorphology”, W. H. Freeman, San Francisco.
58. Lin, C.W., Chang, W.S., Liu, S.H., Tsai, T.T., Lee, S.P., Tsang, Y.C., Shieh, C.L. and Tseng., C.M. (2011). “Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan.” Engineering Geology,123: 3-12.
59. Lu, E.T. and Hamilton, R.J. (1991), “Avalanches and the distribution of solarares” Astrophys. J. 380: 89-92.
60. Luchisheva, A. A., (1952), Practical Hydrology, Gidrometeoizdat, Leningrad.
61. Malamud B.D., Morein G., Turcotte D.L. (1998), “Forest fires: An example of self-organized critical behavior.” Science , 281 : 1840-1842.
62. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P. (2004) “Landslide inventories and their statistical properties.” Earth Surface Processes and Landforms, 29: 687–711.
63. Malamud, B.D. and Turcotte, D.L. (1999) “Self-Organized Criticality Applied to Natural Hazards. ” Natural Hazards ,20(2) : 93-116.
64. Nyman, P., Sheridan, G.J. and Lane ,P.N.J. (2013) “Hydro-geomorphic response models for burned areas and their applications in land management.” Progress in Physical Geography 37(6): 787-812.
65. Pelletier, J.D., Malamud, B.D., Blodgett, T. and Turcotte, D.L. (1997) “Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides.” Engineer Geology, 48:255-268.
66. Richardson, L.F. (1941) “Frequency occurrence of wars and other fatal quarrels.” Nature 148: 598.
67. Solé, R.V., Manrubia,S.C., Luque, B., Delgado, J. and Bascompte,J. (1996) “Phase transitions and complex systems” Complexity: 13-26.
68. Turcotte D.L. (1999) “Self-organized Criticality.” Rep. Prog. Phys. 62: 1377-1429.
69. Varnes, D.J. (1978) “Slope movements and type and processes in: Landslide Analysis and Control,” Transportation Res. Board Nat. Ac. Sci. Washington Special Report, 176:11-13.
70. Weissel, J.K., Stark, C.P., and Hovius, N. (2001) “Landslides triggered by the 1999 Mw7.6 Chichi earthquake in Taiwan and their relationship to topography,” International Geoscience and Remote Sensing Symposium (IGARSS), 2: 759-761.
校內:2019-08-14公開