| 研究生: |
周宛靜 Chou, Wan-Ching |
|---|---|
| 論文名稱: |
於體外和體內試驗下探討幾丁聚醣-珊瑚複合材料之製備 及攜帶藥物之研究 The preparation of chitosan-coral composite for drug carrier in vitro and in vivo |
| 指導教授: |
王東堯
Wang, Tung-Yiu 李澤民 Lee, Tzer-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 珊瑚 、幾丁聚醣 、骨移植取代物 |
| 外文關鍵詞: | coral, chitosan, bone graft |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
早在1970 年代,天然珊瑚就被發現是一種良好的骨生物材料,所以在此利用天然珊瑚作為骨組織修復的材料,並且藉由使用具親和性的生物可吸收性材料進行表面改質,例如幾丁聚醣(Chitosan),是晶型的多醣類聚合物可以改善其表面性質。另一方面幾丁聚醣常用於藥物釋放載體,而且可促進骨母細胞的鹼性磷酸脢的表現,並有助於礦化作用的進行,幫助骨的修復。而在促進誘導骨生成能力方面,Purmorphamine可以促進骨母細胞的分化。因此本實驗的目的是製作出幾丁聚醣-珊瑚複合材料,使用幾丁聚醣攜帶Purmorphamine,在珊瑚表面改質後進行冷凍乾燥及滅菌之後去達到藥物輸送的效果,並且藉由分光光度機UV-visible spectrometer去測量Purmorphamine的釋放量與釋放的速率。接著在幾丁聚醣-珊瑚複合材料上作細胞培養實驗,來評估細胞的表面形態、增殖及分化的能力。進而在動物實驗的模式中,將老鼠頭蓋骨製造出骨缺陷,再將此複合材料植入到老鼠頭蓋骨骨缺損部位,去探討與評估in vivo環境下,骨修復的情形。本實驗希望藉由以上方法的改質讓珊瑚能夠同時具有良好的骨引導能力和骨誘導能力,成為理想的骨修復複合材料。
In 1970, it has been found that coral is a good biomaterial for bone graft, so we take nature coral as the substrate for bone repair. We modify the surface of corals by using bioabsorbable materials, chitosan, which has the good biocompatibility. Chitosan is a polysaccharide polymer which can improve the surface property by coating on many other materials. In other studies, chitosan can also be used in drug carrier in control release system, moreover, chitosan could promote alkaline phosphatase activity of osteoblast, so that it can increase the mineralization and bone regeneration. So as to achieve osteoinductivity, Purmorphamine which has been discovered in stem cell research can induce progenitor mesenchymal stem cell differentiation into osteoblast. Therefore, the aim of this study is to use chitosan carrying Purmorphamine to reach bone repair on drug delivery system. First we culture bone marrow cells on the chitosan-coral composite to observe cell morphology and evaluate the ability of cell proliferation and differentiation in vitro. In vivo, we also implanted the chitosan-coral composite in the bone defect of the rat cranial bone in order to evaluate the bone regeneration and repair. Using above methods to modify the composites can make them have both osteoconductive and osteoinductive , so that the composites would be an ideal scaffold for bone graft and repair.
Albee, F. H. (1920). Studies in Bone Growth: Triple Calcium Phosphate as a Stimulus to Osteogenesis.
Ann Surg 71, 32-9. Alici, E., Alku, O. Z., and Dost, S. (1990). Prostheses designed for vertebral body replacement. J Biomech 23, 799-809.
Antonio Ravaglioli, A. K. (1992). "Bioceramics: Materials, Properties, Applications." Biocoral (1987). http://www.biocoral.com.
Biondi, M., Ungaro, F., Quaglia, F., and Netti, P. A. (2008). Controlled drug delivery in tissue engineering. Advanced Drug Delivery Reviews 60, 229-242.
Bucholz, R. W., Carlton, A., and Holmes, R. E. (1987). Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 18, 323-34.
Caroline, D., Hamdy, C. R., Karin, C., Fatiha, C., Maryam, T., and L'Hocine, Y. (2002). Natural coral exoskeleton as a bone graft substitute: A review. Bio-Medical Materials and Engineering 12, 15-35.
Chau, A., and Mobbs, R. (2009). Bone graft substitutes in anterior cervical discectomy and fusion. European Spine Journal 18, 449-464.
Cui, L., Liu, B., Liu, G., Zhang, W., Cen, L., Sun, J., Yin, S., Liu, W., and Cao, Y. (2007). Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 28, 5477-5486.
D. L, K., and L. L, H. (1969). Electrode Polarization in Alkali Silicate Glasses. Journal of the American Ceramic Society 52, 638-641.
DeLacure, M. D. (1994). Physiology of bone healing and bone grafts. Otolaryngol Clin North Am 27, 859-74. Denkbas, E. B., and Ottenbrite, R. M. (2006). Perspectives on: Chitosan Drug Delivery Systems Based on their Geometries. Journal of Bioactive and Compatible Polymers 21, 351-368.
Ducy, P., and Karsenty, G. (2000). The family of bone morphogenetic proteins. Kidney Int 57, 2207-2214. E.W.White, J. N. W. a. (1973). Carbonate materials as precursors of new ceramic, metal, and polymer materials for biomedical applications. Minerals Science and Engineering 5, 151-65.
F. Souyris, C. P., C. Payrot and C. Servera (1985). Coral, a new biomedical material. Experimental and first clinical investigations on Madreporaria. Plastic & Reconstructive Surgery 13, 64-69.
Gisep, A. (2002). Research on ceramic bone substitutes: current status. Injury 33, 88-92.
Gravel, M., Vago, R., and Tabrizian, M. (2006). Use of natural coralline biomaterials as reinforcing and gas-forming agent for developing novel hybrid biomatrices: Microarchitectural and mechanical studies. Tissue Engineering 12, 589-600.
Jacob, K. (1988). "Handbook of biomedical engineering." Jones, R. (1902). I. Fracture of the Base of the Fifth Metatarsal Bone by Indirect Violence. Ann Surg 35, 697-700 2.
Kawakami, T., Antoh, M., Hasegawa, H., Yamagishi, T., Ito, M., and Eda, S. (1992). Experimental study on osteoconductive properties of a chitosan-bonded hydroxyapatite self-hardening paste. Biomaterials 13, 759-63.
Lee, Y.-M., Park, Y.-J., Lee, S.-J., Ku, Y., Han, S.-B., Klokkevold, P. R., and Chung, C.-P. (2000). The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. Journal of Periodontology 71, 418-424.
Li, S., De Wijn, J. R., Li, J., Layrolle, P., and De Groot, K. (2003). Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng 9, 535-48.
Madihally, S. V., and Matthew, H. W. T. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials 20, 1133-1142.
Mittelmeier, H., and Katthagen, B. D. (1983). [Clinical experience with the implantation of collagen-apatite for local bone regeneration]. Z Orthop Ihre Grenzgeb 121, 115-23.
Miyazawa, K. (1995). Osteoinduction of BMP-chitin complex. Journal of Hard Tissue Biology 4, 70-81.
Muzzarelli, R. A., Zucchini, C., Ilari, P., Pugnaloni, A., Mattioli Belmonte, M., Biagini, G., and Castaldini, C. (1993). Osteoconductive properties of methylpyrrolidinone chitosan in an animal model. Biomaterials 14, 925-9. Muzzarelli, R. A. A. (2009). Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers 76, 167-182.
Ratner, B. D., and Hench, L. (1999). Perspectives on biomaterials. Current Opinion in Solid State and Materials Science 4, 379-380.
Reichert, J. C., Saifzadeh, S., Wullschleger, M. E., Epari, D. R., Schz, M. A., Duda, G. N., Schell, H., van Griensven, M., Redl, H., and Hutmacher, D. W. (2009). The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 30, 2149-2163.
Richard, T. C., Eugene, W. W., Jon, N. W., and Della, M. R. (1975). Tissue ingrowth of replamineform implants. Journal of Biomedical Materials Research 9, 29-45.
Roux, F. X., Brasnu, D., Loty, B., George, B., and Guillemin, G. (1988). Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg 69, 510-3. Roy, D. M., and Linnehan, S. K. (1974). Hydroxyapatite formed from Coral Skeletal Carbonate by Hydrothermal Exchange. Nature 247, 220-222.
Takashi, N., Takao, Y., Shoichiro, H., Tadashi, K., and Setsuo, I. (1985). A new glass-ceramic for bone replacement: Evaluation of its bonding to bone tissue. Journal of Biomedical Materials Research 19, 685-698. Thein-Han, W. W., and Misra, R. D. K. (2009). Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomaterialia 5, 1182-1197. White, R. A., Weber, J. N., and White, E. W. (1972). Replamineform: A New Process for Preparing Porous Ceramic, Metal, and Polymer Prosthetic Materials. Science 176, 922-924.
Wu, X., Ding, S., Ding, Q., Gray, N. S., and Schultz, P. G. (2002). A Small Molecule with Osteogenesis-Inducing Activity in Multipotent Mesenchymal Progenitor Cells. Journal of the American Chemical Society 124, 14520.
Wu, X., Walker, J., Zhang, J., Ding, S., and Schultz, P. G. (2004). Purmorphamine Induces Osteogenesis by Activation of the Hedgehog Signaling Pathway. Chemistry & Biology 11, 1229-1238.
Wu, Y.-C., Lee, T.-M., Chiu, K.-H., Shaw, S.-Y., and Yang, C.-Y. (2009). A comparative study of the physical and mechanical properties of three naturalcorals based on the criteria for bone–tissue engineering scaffolds. Journal of Materials Science: Materials in Medicine 20, 1273-1280. Yilgor, P., Tuzlakoglu, K., Reis, R. L., Hasirci, N., and Hasirci, V. (2009). Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30, 3551-3559. Zhang, Y., Wang, Y., Shi, B., and Cheng, X. (2007). A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials 28, 1515-1522.
吳侑峻 (2003). 骨的組織工程研究:利用聚乳酸-聚乙醇酸共聚物當作支架. 73.
李政昕 (2002). 脂肪組織中獲取具全能性幹細胞:應用在聚乳酸-聚乙醇酸共聚物三度立體支架之骨組織工程. 106.
許金印 (2004). 添加骨碎補之多孔性骨科材料培養幹細胞應用於組織工程可行性評估. 119.
劉百栓 (2004). 以天然交聯劑綠梔子素交聯明膠結合三鈣磷酸鹽粉末之新骨科替代材料的研製與評估. 138.