簡易檢索 / 詳目顯示

研究生: 黃肇暄
Huang, Jhao-Syuan
論文名稱: 應用於助聽器之適應性可調式有限帶寬回授消除演算法設計
Adaptively Variable Band-Limited Algorithm Design for Feedback Cancellation Applied to Hearing Aids
指導教授: 雷曉方
Lei, Sheau-Fang
共同指導教授: 賴信志
Lai, Shin-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 94
中文關鍵詞: 適應性濾波器聲學回授音消除助聽器有限帶寬
外文關鍵詞: Adaptive filter, Feedback Cancellation, Hearing Aids, Band-Limited
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聲學回授音(Acoustic Feedback)對於助聽器使用者是主要干擾聲音辨識的因素之一,本研究提出新的適應性回授消除 (Adaptive Feedback Cancellation, AFC) 演算法,可以因應回授音頻率的變化,自動改變有限帶寬(Band-Limited, 簡稱BL)的頻率範圍,避免回授音能量較小的頻率在預測回授音上的干擾,達到較好的回授音抑制效果,而且不會因為回授音路徑變化而無法消去;另外加入係數平滑法(Coefficients Smoothing)和增益控制(Gain Control)來增加預測回授音的效果以及預防發散的聲音影響聽者舒適度,經過模擬,當回授音路徑能量集中高頻,本研究提出之架構比一般形式的AFC效能在誤差上改善4.46dB,外加穩定增益(Added Stable Gain簡稱ASG)可增加5.11dB,而訊號回授比(Signal to feedback ratio, SFR)也多出3.48dB,而在低頻時也不會像過去被提出的有限帶寬AFC一樣失效,並能夠正常的消除回授音。

    In this thesis, a band-limited (BL) adaptive feedback cancellation algorithm (AFC) is proposed, and the BL frequency can be adjusted automatically. The proposed algorithm overcomes the limitation of traditional BL-filter-X AFC (BL-FX-AFC) and it can efficiently accommodate itself to the changed environment. We use a sliding discrete cosine transform (DCT) to realize the transform-domain least mean square algorithm (LMS), and adopt coefficient smoothing scheme and gain control method to improve the performance of feedback cancellation. The results show that the proposed AFC is better than basic AFC by 4.46dB in misalignment, 5.11dB in ASG, and 3.48dB in SFR while the spectrum power of feedback path concentrates on high-frequency band. Not like BL-FX-AFC, it can still cancel feedback noise without being out of control while the spectrum power of feedback path concentrates on low-frequency band. Therefore, it is very suitable for future applications in the area of hearing aids.

    中文摘要 I EXTENDED ABSTRACT III 誌謝 XI 目錄 XIII 表目錄 XV 圖目錄 XVII CHAPTER 1 緒論 1 1.1 研究背景 1 1.2 助聽器基本架構 5 1.3 助聽器聲學回授音介紹 6 1.4 回授消除相關作法簡介 10 1.5 提出之AFC演算法動機與簡介 13 1.6 論文架構 14 CHAPTER 2 適應性濾波器 15 2.1 最佳線性濾波器[6] 15 2.2 最小均方適應性演算法(Least mean square adaptive algorithm) 17 2.3 最小均方適應性濾波器流程 19 2.4 轉換域適應性濾波器 20 2.5 DCT-LMS 26 CHAPTER 3 AFC之文獻回顧及相關原理介紹 30 3.1 Continuous AFC (C-AFC) 30 3.2 Band-Limited Filter-X AFC(BL-FX AFC)[9, 10, 22] 36 3.3 Prediction Error Methods Based AFC (PEM AFC) [11, 12] 38 3.4 章節總結 41 CHAPTER 4 提出之適應性可調式有限帶寬回授消除演算法 42 4.1 系統概述 42 4.2 系統整體運作流程 44 4.3 Sliding DCT in Proposed AFC 48 4.4 DCT LMS in Proposed AFC 49 4.5 Power and Coefficient Analysis 49 4.6 Coefficients Smoothing 52 4.7 Band-Limited Switch 55 4.8 Gain Control 58 4.9 演算法系統總結 59 4.10 Computation Complexity 60 CHAPTER 5 模擬及結果探討 62 5.1 效能參數介紹 62 5.2 模擬環境設定 63 5.3 模擬結果及比較 66 5.4 計算量比較 83 CHAPTER 6 結論及未來展望 85 參考文獻 87 APPENDIX Sliding Discrete Cosine Transform 91

    [1] 行政院衛生福利部統計處 http://www.mohw.gov.tw/cht/DOS/
    [2] A. Vonlanthen and H. Arndt, “Hearing Instrument Technology for the Hearing Health Care Professional,” Thomson Delmar Learning, 3rd ed, Clifton Park, NY, 2006.
    [3] 郭姿吟,“助聽器音效問題解決策略對音效抱怨與滿意度之效應”, 台灣,國立高雄師範大學聽力學與語言治療研究所碩士論文, 2008.
    [4] T. van Waterschoot and M. Moonen, “Fifty Years of Acoustic Feedback Control: State of the Art and Future Challenges,” Proceedings of the IEEE, vol. 99, pp. 288-327, 2011.
    [5] J. Benesty, M. M. Sondhi, and Y. Huang, “Springer Handbook of speech processing,” New York, Inc. Secaucus, NJ, Springer-Verlag, 2008.
    [6] S.Haykin, “Adaptive Filter Theory,” Englewood Cliffs, NJ, 5th ed, Prentice Hall, 2013.
    [7] M. G. Siqueira and A. Alwan, “Steady-state analysis of continuous adaptation in acoustic feedback reduction systems for hearing-aids,” IEEE Trans. Speech and Audio Processing vol. 8, pp. 443-453, 2000.
    [8] M. T. Akhtar, M. Abe, and M. Kawamata, “On active noise control systems with online acoustic feedback path modeling,” IEEE Trans. Audio, Speech Lang. Process, vol. 15, 2007.
    [9] J. Hellgren, “Analysis of feedback cancellation in hearing aids with filtered-X LMS and the direct method of closed loop identification,” IEEE Transactions Speech and Audio Processing, vol. 10, pp. 119-131, 2002.
    [10] Y. Li and L. Chang, “The application of band-limited NLMS algorithm in hearing aids,” 2012 International Conference in Computer Science and Information Processing (CSIP), pp. 1446-1449, 2012
    [11] A. Spriet, I. Proudler, M. Moonen, and J. Wouters, “Adaptive feedback cancellation in hearing aids with linear prediction of the desired signal,” IEEE Trans. Signal Processing, vol. 53, pp. 3749-3763, 2005.
    [12] J. M. Gil-Cacho, T. van Waterschoot, M. Moonen, and S. H. Jensen, “Transform domain prediction error method for improved acoustic echo and feedback cancellation,” Proceedings of the 20th European in Signal Processing Conference (EUSIPCO), pp. 2422-2426, 2012.
    [13] J. Hellgren, T. Lunner, and S. Arlinger, “System identification of feedback in hearing aids,” The Journal of the Acoustical Society of America, vol. 105, pp. 3481-3496, 1999.
    [14] J. Hellgren, T. Lunner, and S. Arlinger, “Variations in the feedback of hearing aids,” The Journal of the Acoustical Society of America, vol. 106, pp. 2821-2833, 1999.
    [15] F. Beaufays, “Transform-domain adaptive filters: an analytical approach,” IEEE Trans. on Signal Processing, vol. 43, pp. 422-431, 1995.
    [16] L. Jae and U. Chong, “A reduced structure of the frequency-domain block LMS adaptive digital filter,” Proceedings of the IEEE, vol. 72, pp. 1816-1818, 1984.
    [17] J. J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE Signal Processing Magazine, vol. 9, pp. 14-37, 1992.
    [18] G. Glentis, K. Berberidis, and S. Theodoridis, “Efficient least squares adaptive algorithms for FIR transversal filtering,” IEEE Signal Processing Magazine, vol. 16, pp. 13-41, 1999.
    [19] J. Benesty, J. Chen, and Y. A. Huang, “Noise reduction algorithms in a generalized transform domain,” IEEE Trans. on Audio, Speech, and Language Processing, vol. 17, pp. 1109-1123, 2009.
    [20] M. Unser, “On the approximation of the discrete Karhunen-Loeve transform for stationary processes,” Signal Processing, vol. 7, pp. 231-249, 1984.
    [21] B. Widrow and E. Walach, “Adaptive inverse control,” Control Engineering Practice, vol. 5, pp. 146-147, 1997.
    [22] H.-F. Chi, S. X. Gao, S. D. Soli, and A. Alwan, “Band-limited feedback cancellation with a mo3ified filtered-X LMS algorithm for hearing aids,” Speech Communication, vol. 39, pp. 147-161, 2003.
    [23] J. Makhoul, “Stable and efficient lattice methods for linear prediction,” IEEE Trans. on Acoustics, Speech and Signal Processing, vol. 25, pp. 423-428, 1977.
    [24] D. Barac-Cikoja, “Effects of temporal and spectral alterations of speech feedback on speech production by persons with hearing loss,” Archives of Otolaryngology–Head & Neck Surgery, vol. 130, pp. 598-603, 2004.
    [25] V. Kober and G. Cristobal, “Fast recursive algorithms for short-time discrete cosine transform,” Electronics Letters, vol. 35, pp. 1236-1238, 1999.
    [26] V. Kober, “Fast algorithms for the computation of sliding discrete sinusoidal transforms,” IEEE Trans. on signal processing, vol. 52, pp. 1704-1710, 2004.
    [27] E. Rothauser, W. Chapman, N. Guttman, K. Nordby, H. Silbiger, G. Urbanek, et al., “IEEE recommended practice for speech quality measurements,” IEEE Trans. Audio Electroacoust, vol. 17, pp. 225-246, 1969.
    [28] P. C. Loizou, “Speech enhancement theory and practice,” CRC press, 2013.
    [29] “ANSI Standard S1.11-2004,” Specification for Octave-Band and Fractional-Octave-Band Analog and Digital Filters.
    [30] Byeong Lee, “A new algorithm to compute the discrete cosine Transform,” IEEE Trans. on Acoustics, Speech and Signal Processing, vol.32, no.6, pp.1243,1245, Dec 1984.

    無法下載圖示 校內:2019-09-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE