簡易檢索 / 詳目顯示

研究生: 周冠汶
Chou, Kuan-Wen
論文名稱: 改善使用壽命之主動式有機發光二極體顯示器補償電路設計
Design of Compensating Driving Circuit for Lifetime Amelioration of AMOLED
指導教授: 林志隆
Lin, Chih-Lung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 82
中文關鍵詞: 有機發光二極體畫素補償電路外部補償電路反向偏壓
外文關鍵詞: OLED, pixel circuit, external compensation circuit, reversed-bias
相關次數: 點閱:85下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動式有機發光二極體顯示器之畫素電路必須採用薄膜電晶體作為驅動與開關元件,然而不同製程的薄膜電晶體元件臨界電壓會因為製程上的誤差或者因長時間的使用而產生漂移。此外,有機發光二極體材料隨著長時間使用而老化的現象導致臨界電壓上升及發光效率下降,因而對於畫面顯示品質造成影響。
    本論文即針對上述問題提出四種新式畫素補償電路。第一個電路是利用傳統2T1C電路架構並結合外部補償電路進行改善,具有較高的開口率並可以有效維持OLED電流穩定度以改善面板亮度均勻性,但依然會受到發光材料老化導致發光效率下降的影響,從模擬結果可知其驅動電流幾乎維持一致,但其發光亮度卻會隨著時間而逐漸下降,相較於傳統畫素電路,面板發光亮度能有效改善15%。因此在第二個電路中,為了有效維持面板亮度均勻性同時簡化電路操作,畫素內元件數增為3T1C,利用畫素內部元件的設計,採用動態平衡的方式使驅動電流不受到臨界電壓變異的影響,同時利用外部補償電路偵測電流衰減幅度動態調整偵測電壓,以達到面板均勻性的目標,由實驗結果顯示在60 ℃下,經過50000秒的測試,電流衰減度只有原來的5%,而實際接上有機發光二極體測試,可發現其發光亮度幾乎一致。第三個電路採用電壓回授的概念進行設計,畫素內元件數為3T1C,利用外部電路可以達到消除TFT臨界電壓變異的影響,同時利用OLED材料老化衰減臨界電壓上升的現象改善亮度下降的問題,由模擬結果可知當有機發光二極體臨界電壓漂移量為0.9V時,本電路亮度可以維持在原先的96.4%,而傳統P型與N型2T1C分別為79.4%與47.4%,因此本電路可以有效改善面板亮度衰減的問題。由於前三個電路皆是採用外部補償的方式進行面板亮度的改善,其操作方式較為複雜,因此在第四個電路中結合反向偏壓的概念進行設計,畫素元件數維持3T1C,可以同時有效降低電源線內阻效應與元件臨界電壓的影響,由實驗結果可知,當發光時間為傳統驅動方式的20%時,其亮度可以維持在原先的94.3%,而傳統發光方式則為76.4%,此外,當反向偏壓由0V上升到6V時,其亮度亦由77.15%提升至94.3%,因此反向偏壓的方式的確可以有效改善有機發光二極體老化的現象,由模擬結果可得知電路中相關節點電流變化值都幾乎維持一致,所以本電路可以補償薄膜電晶體臨界電壓變異和降低電源線內阻效應的影響,並且增加有機發光二極體的顯像壽命。

    For an active matrix organic light emitting diode (AMOLED) display, the pixel circuit utilizes a thin film transistor (TFT) as the driving and switching component. However, variation in the VTH of the driving TFT due to process variation or long-term operation, in addition to luminance decay caused by OLED aging, directly influence the image quality of the AMOLED display.
    This dissertation proposes four novel pixel circuits and verifies their effectiveness by simulations and experiments. The first system integrates a simplified 2T1C pixel structure and external compensation circuit to ameliorate VTH variations and OLED degradation. The pixel current in the proposed system remains constant, whereas current degradation in the conventional pixel circuit is over 20%. Additionally, the luminance degrades by 15% in the proposed pixel circuit versus 30% in the conventional 2T1C circuit. The second circuit can stabilize the OLED current against TFT degradation and provide an additional driving current to compensate for the brightness of the AMOLED. Measurement results indicate that the current degradation of the proposed circuit is less than 5%, over more than 50000s at 60 ℃, whereas that of a conventional 2T1C pixel circuit is over 34%. Additionally, the luminance of the fabricated OLED device with the proposed 3T1C driving scheme can remain at the initial value. The third proposed pixel circuit with three TFTs utilizes the external compensation circuit to detect VTH variations, and employs the increase in VTH_OLED as voltage feedback to compensate for luminance degradation. Simulation results indicate that the normalized luminance of this work is 96.4%, while ΔVTH_OLED is 0.9 V, while those of the conventional 2T1C circuit with P-type driving TFT and N-type driving TFT are 79.4% and 47.4%, respectively. Thus, the proposed driving scheme can ameliorate the luminance degradation via the detection of VTH_OLED through the external compensated circuit. Because of the complexity in the operation of the external detection method, the fourth proposed 3T1C circuit adopts a novel ac driving method to ameliorate the brightness uniformity. Experimental results indicate that adjusting the duty ratio of the ac driving scheme can ameliorate the brightness uniformity; meanwhile, the normalized luminance of a 20% duty ratio after a 3600s stress is 94.3% and that of dc stress is 76.4%. The normalized luminance of measured OLED is 94.3% under a higher voltage (-6V), while it is only 77.15% under a lower voltage (0V). Therefore, the applications of a reversed-bias voltage under an ac driving scheme ameliorate luminance uniformity variation. The proposed pixel circuit has high immunity to variations of electrical characteristics of TFTs and can compensate for OLED degradation.

    Pages Chinese Abstract ⅰ English Abstract ⅱi Acknowledgements v Contents ⅴii List of Tables x List of Figures xi Chapter 1 Introduction 1.1 Background 1 1.2 Motivation and Previous Research 4 1.3 Dissertation Organization 10 Chapter 2 Pixel Circuit Design with Simplified 2T1C Structure Using Compensating Architecture for AMOLED 2.1 Issues of the Previous Pixel Circuit 11 2.2 Pixel Circuit Schematic and Operation 13 2.3 Simulation Results and Discussion 17 2.4 Summary 19 Chapter 3 A Novel 3-TFT Voltage Driving Method of Compensating VTH Shift for a-Si:H TFT and OLED Degradation for AMOLED 3.1 Issues of the Previous Pixel Circuit 20 3.2 Circuit Schematic and Operation 22 3.3 Results and Discussion 27 3.4 Summary 33 Chapter 4 Reducing OLED Degradation Using Self-Compensated Circuit for AMOLED Displays 4.1 Issues of the Previous Pixel Circuit 34 4.2 Circuit Schematic and Operation 36 4.3 Simulation and Experimental Result 40 4.4 Summary 46 Chapter 5 Lifetime Amelioration for AMOLED Pixel Circuit by Using a Novel AC Driving Scheme 5.1 Issues of the Previous Pixel Circuit 47 5.2 Pixel Circuit Schematic and Operation 50 5.3 OLED Fabrication Process and Electrical Parameter Extraction 54 5.4 Circuit Simulation and Discussion 61 5.5 Summary 66 Chapter 6 Conclusion and Future Work 6.1 Conclusion 67 6.2 Future Work 70 References 71 作者簡歷 79

    [1] K. Leo, “Organic LEDs look forward to a bright, white future,” Science, vol. 310, pp. 1762–1763, Dec. 2005.
    [2] Y. Sun, N. Giebink, H. Kanno, B. Wa, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature, vol. 440, pp. 908–912, Apr. 2006.
    [3] G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, and S. T. Lee, “White organic light-emitting devices using a phosphorescent sensitizer,” Appl. Phys. Lett., vol. 82, pp. 4224–4226, Jun. 2003.
    [4] H. Kanno, N. C. Giebink, Y. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett., vol. 89, p. 023503-1-3, July 2006.
    [5] G. Cheng, Y. Zhang, Y. Zhao, S. Liu, and Y. Ma, “Improved efficiency for white organic light-emitting devices based on phosphor sensitized fluorescence,” Appl. Phys. Lett., vol. 88, p. 083512-1-3, Feb. 2006.
    [6] H. Kanno, Y. Sun, and S. R. Forrest, “White organic light-emitting device based on a compound fluorescent-phosphor-sensitized-fluorescent emission layer,” Appl. Phys. Lett., vol. 89, p. 143516-1-3, Oct. 2006.
    [7] G. Schwartz, K. Fehse, M. Pfeiffer, K. Walzer, and K. Leo, “Highly efficient white organic light emitting diodes comprising an interlayer to separate fluorescent and phosphorescent regions,” Appl. Phys. Lett., vol. 89, p. 083509-1-3, Aug. 2006.
    [8] R. S. Deshpande, V. Bulovic´, and S. R. Forrest, “White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer,” Appl. Phys. Lett., vol. 75, pp. 888–890, Aug. 1999.
    [9] J. Kido, “Development of high performance OLEDs,” in Proc. SPIE, Sept. 2008, vol. 7051, p. 705169.
    [10] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes", Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
    [11] R. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R.G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875-878.
    [12] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE Journal of Display Technology, vol. 1, no. 2, pp. 248-266, Dec. 2005.
    [13] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1477-1486, Sept. 2004.
    [14] M. J. Powell, C. Berkel, and J. R. Hughes, “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors,” Appl. Phys. Lett., vol. 54, pp. 1323-1325, Jan. 1989.
    [15] T. F. Chen, C. F. Yeh, and J. C. Lou, “Investigation of grain boundary control in the drain junction on laser-crystalized poly-si thin film transistors,” IEEE Electron Device Lett., vol. 24, no. 7, pp. 457-459, Jul. 2003.
    [16] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes for a-Si:H and LTPS AMOLED displays,” IEEE Journal of Display Technology, vol. 1, no. 2, pp. 267-277, Dec. 2005.
    [17] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, pp. 690-692, Oct. 2004.
    [18] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” IEEE Journal of Display Technology, vol. 1, no. 1, pp. 100-104, Sep. 2005.
    [19] J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp. 897-899, Dec. 2005.
    [20] G. R. Chaji and A. Nathan, “A stable voltage-programmed pixel circuit for a-Si:H AMOLED displays,” IEEE Journal of Display Technology, vol. 2, no. 4, pp. 347-358, Dec. 2006.
    [21] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129-131, Feb. 2007.
    [22] S. Ono, K. Miwa, Y. Maekawa, and T. Tsujimura, “VT compensation circuit for AMOLED displays composed of two TFTs and one capacitor,” IEEE Trans. Electron Devices, vol. 54, pp. 462-467, Mar. 2007.
    [23] C. L. Lin and T. T. Tsai, “A novel voltage driving method using 3-TFT pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 6, pp. 489-491, Jun. 2007.
    [24] S. J. Ashtiani, P. Servati, D. Striakhilev, and A. Nathan, “A 3-TFT current-programmed pixel circuit for AMOLEDs,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1514-1518, Jul. 2005.
    [25] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 25, no. 5, pp. 280-282, May 2004.
    [26] Y. He, R. Hottori, and J. Kanicki, “Current-source a-Si:H thin-film transistor circuit for active-matrix organic light-emitting displays,” IEEE Electron Device Lett., vol. 21, no. 12, pp. 590-592, Dec. 2000.
    [27] Y. C. Lin, H. P. D. Shieh, and J. Kanicki, “A novel current-scaling a-Si:H TFTs pixel electrode circuit for AM-OLEDs,” IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1123-1131, June 2005.
    [28] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912-915.
    [29] H. Kageyama, H. Akimoto, T. Ouchi, N. Kasai, H. Awakura, N. Tokuda, and T. Sato, “A 3.5-in. OLED display using a 4-TFT pixel circuit with an innovative pixel driving scheme,” in Proc. SID Tech. Dig., 2003, pp. 96-99.
    [30] H. Kageyama, H. Akimoto, Y. Shimizu, T. Ouchi, N. Kasai, H. Awakura, N. Tokuda, K. Kajiyama, and T. Sato, “A 2.5-inch OLED display with a three-TFT pixel circuit for clamped inverter driving,” in Proc. SID Tech. Dig., 2004, pp. 1394-1397.
    [31] C. H. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, and H. P. D. Shieh, “AMOLED panel driven by time-multiplexed clamped inverter circuit to reduce complex control signals,” J.SID, pp. 787-791, Jul. 2008.
    [32] C. L. Lin, T. T. Tsai, and Y. C. Chen, “A novel voltage-feedback pixel circuit for AMOLED displays,” IEEE Journal of Display Technology, vol. 4, no. 1, pp. 54-60, Mar. 2008.
    [33] A. Giraldo, M. J. Childs, D. Fish, M. T. Johnson, M. Klein, H. Lifka, W. Oepts, W.A. Steer, and N.D. Young, “Optical feedback in active matrix polymer OLED displays,” in The 16th Annual Meeting of the IEEE, vol. 2, 2003, pp. 529-530.
    [34] D. Fish, N. Young, S. Deane, A. Steer, D. George, A. Giraldo, H. Lifka, O. Gielkens, and W. Oepts, “Optical feedback for AMOLED display compensation using LTPS and a-Si:H technologies,” in Proc. SID Tech. Dig., 2005, pp. 1340-1343.
    [35] D. A. Torres, P. F. Lister, and P. Newbury, “LUT-based compensation model for OLED degradation,” J. SID, vol. 13, issue 5, pp. 435-441, May 2005.
    [36] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, pp. 728-730, Nov. 2004.
    [37] S. Yujuan, Z. Yi, C. Xinfa, and L. Shiyong, “A simple and effective ac pixel driving circuit for active matrix OLED,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 1137-1140, Apr. 2003.
    [38] Y. Si, L. Lang, Y. Zhao, X. Chen, and S. Liu, “Improvement of pixel electrode circuit for active-matrix OLED by application of reversed-biased voltage,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 12, pp. 856–859, Dec. 2005.
    [39] D. Zou, M. Yahiro, and T. Tsutsui, “Improvement of current-voltage characteristics in organic light emitting diodes by application of reversed-bias voltage,” Jpn. J. Appl. Phys., vol. 37, no. 11A, pp. L1406–L1408, Nov. 1998.
    [40] S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” IEEE Journal of Display Technology, vol. 3, no. 1, pp. 36-39, Mar. 2007.
    [41] P. E. Burrow, S. R. Forrest, T. X. Zhou, and L. Michalski, “Operating lifetime of phosphorescent organic light emitting devices,” Appl. Phys. Lett., vol. 76, no. 18, pp. 2493-2495, May 2000.
    [42] G. R. Chaji, C. Ng, A. Nathan, A. Werner, J. Birnstock, O. Schneider, and J. B. Nimoth, “Electrical compensation of OLED luminance degradation,” IEEE Electron Device Lett., vol. 28, no. 12, pp. 1108-1110, Dec. 2007.
    [43] H. J. In and O. K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron Device Lett., vol. 30, no. 4, pp. 377-379, Apr. 2009.
    [44] H. J. In, K. H, Oh, I. Lee, D. H. Ryu, S. M. Choi, K. N. Kim, H. D. Kim, and O. K. Kwon, “An advanced external compensation system for active matrix organic light-emitting diode displays with poly-Si thin-film transistor backplane,” IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 3012-3019, Nor. 2010.
    [45] M. H. M. Lu, M. Hack, R. Hewitt, M. S. Weaver, and J. J. Brown, “Power Consumption and Temperature Increase in Large Area Active-Matrix OLED Displays,” IEEE Journal of Display Technology, vol. 4, no. 1, pp. 47-53, Mar. 2008.
    [46] H. Y. Lu, P. T. Liu, T. C. Chang, and S. Chi, “Enhancement of Brightness Uniformity by a New Voltage-Modulated Pixel Design for AMOLED Displays,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 743–745, Sep. 2006.
    [47] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, “Invited paper: Comparison of a-Si:H and poly-Si for AMOLEDs,” in Proc. SID Tech. Dig., 2004, pp. 1504–1507.
    [48] S. J. Ashtiani and A. Nathan, “A driving scheme for active-matrix organic light-emitting diode displays based on current feedback,” IEEE Journal of Display Technology, vol. 5, no. 7, pp. 257–264, Jul. 2009.
    [49] J. C. Goh, J. Jang, K. S. Cho, and C. K. Kim, “A new a- Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes,” IEEE Electron Device Lett., vol. 24, no. 9, pp. 583–585, Sept. 2003.
    [50] Y. H. Tai, M. H. Tsai, and S. C. Huang, “The linear combination model for the degradation of amorphous silicon thin film transistors under drain AC stress,” Japanese J. Applied Physics, vol. 47, no. 8, pp. 6228–6235, Aug. 2008.
    [51] H. Lee, Y. C. Lin, H. P. D. Shieh, and J. Kanicki, “Current-scaling a-Si:H TFT pixel-electrode circuit for AMO-LEDs: electrical properties and stability,” IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2403–2410, Sept. 2007.
    [52] G. R. Chaji and A. Nathan, “Parallel addressing scheme for voltage-programmed active-matrix OLED displays,” IEEE Trans. Electron Devices, vol. 54, no. 5, pp. 1095–1100, May 2007.
    [53] M. Kimura, D. Suzuki, M. Koike, S. Sawamura, and M. Kato, “Pulsewidth modulation with current uniformization for AM-OLEDs,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2624–2630, Oct. 2010.
    [54] J. H. Lee, J. J. Huang, C. C. Liao, P. J. Hu, and Y. Chang, “Operation lifetime of organic light-emitting devices with different layer structures,” Chemical Physics Lett., 402, 335, 2005.
    [55] H. Y. Lu, T. T. Chang, Y. H. Tai, P. T. Liu, and S. Chi, “A new pixel circuit compensating for brightness variation in large size and high resolution AMOLED displays,” IEEE Journal of Display Technology, vol. 3, no. 4, pp. 398–403, Dec. 2007.
    [56] M. Bagheri, S. J. Ashtiani, and A. Nathan, “Fast voltage-programmed pixel architecture for AMOLED displays,” J. Display Technol., vol. 6, no. 5, pp. 191–195, May 2010.
    [57] Y. S. Son, Y. J. Jeon, and G. H. Cho, “Transient charge feedforward driver for high-speed current-mode data driving in active-matrix OLED displays,” IEEE Trans. Circuits Syst. I, Regular Papers, vol. 57, no. 3, pp. 539–547, Mar. 2010.
    [58] J. C. Goh, J. Jang, K. S. Cho, and C. K. Kim, “A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes,” IEEE Electron Device Lett., vol. 24, no. 9, pp. 583–585, Sept. 2003.
    [59] T. Sasaoka, M. Sekiya, A. Yumoto, J. Yamada, T. Hirano, Y. Iwase, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura, and T. Urabe, “A 13.0-inch AM-OLED display with top emitting structure and adaptive current mode programmed pixel circuit (TAC),” in Proc. SID Tech. Dig., 2001, pp. 384-387.
    [60] J. L. Samford and F. R. Libsch, “Vt compensated voltage-data a-Si:H TFT AMOLED pixel circuits,” J. SID, vol. 12, no. 1, pp. 65-73, 2004.
    [61] P. C. Kao, S. Y. Chu, C. H. Chen, H. H. Huang, C. H. Yang, and I. W. Sun, “White and red organic light-emitting diodes using a phosphorescent iridium complex as a red dopant,” Journal of The Electrochemical Society, vol. 153, pp. H228–H231, 2006.
    [62] H. H. Huang, S. Y. Chu, and P. C. Kao, “Improved hole-injection and power efficiency of organic light-emitting diodes using an ultrathin Li-doped ZnO buffer Layer,” Journal of The Electrochemical Society, vol. 154, pp. J105–J108, 2007.
    [63] H. H. Huang, S. Y. Chu, P. C. Kao, C. H. Yang, and I. W. Sun, “High efficiency red organic light-emitting diodes using a phosphorescent iridium complex doped into a hole-blocking material,” Thin Solid Films, vol. 517, pp. 3788–3791, 2009.
    [64] C. H. Chang, H. C. Cheng, Y. J. Lu, K. C. Tien, H. W. Lin, C. L. Lin, C. J. Yang, and C. C. Wu, “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Organic Electronics, vol. 11, pp. 247–254, Feb. 2010.
    [65] C. H. Chang, K. C. Tien , C. C. Chen, M. S. Lin, H. C. Cheng, S. H. Liu, C. C. Wu, J. Y. Hung, Y. C. Chiu, and Y. Chi, “Efficient phosphorescent white OLEDs with high color rendering capability,” Organic Electronics, vol. 11, pp. 412–418, Mar. 2010.
    [66] M. S. Shur, H. C. Slade, T. Ytterdal, L. Wang, Z. Xu, K. Aflatooni, Y. Byun, Y. Chen, M. Froggatt, A. Krishnan, P. Mei, H. Meiling, B.-H. Min, A. Nathan, S. Sherman, M. Stewart, and S. Theiss, “Modeling and scaling of a-Si:H and poly-Si thin film transistors,” in Proc. Mater. Res. Soc. Symp., vol. 467, pp. 831–842, 1997.

    下載圖示 校內:2016-08-31公開
    校外:2016-08-31公開
    QR CODE