簡易檢索 / 詳目顯示

研究生: 王躍霖
Wang, Yao-Lin
論文名稱: 二維土石流模式精進與地理資訊系統之整合
Integration of Advanced 2-D Debris Flow Numerical Model with GIS
指導教授: 謝正倫
Shieh, Chjeng-Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 103
中文關鍵詞: 土石流數值模式模擬系統整合地理資訊系統
外文關鍵詞: debris flow, numerical model, simulation, system integration, GIS
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣的地形陡峭,地質支離破碎,伴隨強降雨和颱風,使臺灣成為一個易受地質災害、水文災害和復合災害影響的國家。隨著人口與經濟開發的成長,在土地有限的情況下,諸多山坡地地區已被開發成人類居住的地區,且往往許多居住的地區是溪流的谷口。殊不知當土石流發生時,該地區是土砂大量堆積的土石流扇狀地地區,並造成巨大的生命和財產損失。土石流是一種自然現象,如果總是使用工程構造物來抵禦土石流,那麼河流的整體輸砂平衡則失去了平衡。在土石流之災害防治對策上,屬於軟體之土石流預警系統、土石流扇狀地之危險區域範圍劃定,尤為重要。
    蔡元芳(1999年)和曾文孝(2002年)先後在開發了二維土石流數值模式,但兩者皆缺少了使用者介面(UI)。本研究採用跳蛙法離散土石流基本方程式,入流邊界位於上游邊界上,入流邊界以外皆為開放邊界。當離散對流項時,因使用上風法將虛擬邊界條件添加到離散方程式。此外,為了使模式有更高的使用效率,並使模式之使用更加容易和廣泛。本研究整合Q-GIS與二維土石流數值模式,並簡化了複雜的跨系統操作,如:數據預處理、土石流入口點設定及參數設置。
    最後,本研究成功地將二維土石流數值模式與Q-GIS整合在單一集成系統中。透過自動鍵入輸入圖層之數據資料和高級參數設置,通過允許使用者選擇打開或關閉高級參數設置,構建一個數值模式,以避免複雜的跨系統操作錯誤。本研究以莫拉克颱風期間發生的新開土石流為案例研究,以確認整合系統之有效性。對比整合系統之演算後影響邊界,十分接近歷史影響邊界,重疊率達到81%。模擬結果合理且可接受。

    Taiwan’s geology is steep and geologically fragmented coupled with heavy rainfall and tropical cyclones let Taiwan become a country, which is vulnerable to geological disasters, hydrological disasters and compound disasters. The place where human often live on the hillside is the valley of the stream but do not know when the debris flow occurred, the area is a large amount of sediment of the debris-flow fan shaped land, resulting in a great loss of life and property. The debris flow is a natural phenomenon, if always use structures to defense the debris flow, then the overall sand transport balance of the river is lost the main source of gravel materials.
    Tsai (1999) and Tseng (2002) developed 2-D debris flow numerical model development in National Cheng Kung University, but both of their models are short of user interface (UI). This study used leap-frog method to discrete basic equation of debris flow. About boundary condition, inflow boundary is on the border in upstream side and all the other sides are the open boundary. Moreover, add the virtual boundary conditions to discrete convection set. In order to improve efficiency and make using of numerical model easier and more widespread. This study uses the Q-GIS as the GIS to integrate. Additionally, this study simplifies the cross-system operational such as preprocessing of data, ensuring the entrance point and setting the parameters in the single integrated system.
    Finally, this study integrated the advanced 2-D debris flow numerical model with Q-GIS in the single integrated system successfully. Built a function to avoid simulated wrong stream by automatically modified and advanced parameter function to let the user choose to turn the advanced function on or off. This study choosed the Xinkai debris flow occurred during typhoon Morakot as the case study to improve the efficacy of integrated system. The border of simulated influence area close to the border of historical influence area. Additionally, the overlap rate reached 81%. The simulation result is reasonable and acceptable.

    Abstract(mandarin) I Abstract II Acknowledgments III Table of Contents IV List of Figures VI List of Tables IX Symbol Description X Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Research Objectives 2 1.3 Literature Review 4 1.4 Research Process and Framework 11 CHAPTER 2 Advanced Numerical Simulation And Analysis 13 2.1 Derivation of Basic Equations 13 2.2 Advanced 2-D Debris Flow Numerical Model Establishment 28 2.3 Examination of Advanced Numerical Model 37 2.4 Summary of Advanced Numerical Model 44 CHAPTER 3 System Interface Establishment 45 3.1 Data Preprocessing 46 3.2 Terrain Correction 49 3.3 Parameter Setting 51 3.4 Result Display 55 CHAPTER 4 Case Study of Integrated System 57 4.1 Introduction of Case Area 57 4.2 Parameter Setting of Case Study 60 4.3 Result of Case Study 61 CHAPTER 5 Conclusions and Suggestions 65 5.1 Conclusions 65 5.2 Suggestions 66 References 67 Appendix A 71 Appendix B 83 Appendix C 84 Appendix D 85 Appendix E 96 Appendix F 97 Curriculum Vitae 103

    Bagnold, R. A. (1954). Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 225(1160), 49-63. Retrieved from www.jstor.org/stable/99440
    Chang, H. C., Chen, C. S., & Sung, Q. C. (2014). On The Causes of Landslides in Shinkai Village. Journal of Chinese Soil and Water Conservation, 45(1), 19-26.
    Chen, C. L. (1988). Generalized viscoplastic modeling of debris flow. Journal of Hydraulic Engineering, 114(3), 237-258.
    Chen, S. C. (2011). The Chenyulan river morphology change induced by shenmu watershed sediment yield. National Chung Hsing University. (In Chinese)
    Chen, X. Z., Chen, H., You, Y., Chen, X. Q., & Liu, J. F. (2016). Weights-of-evidence method based on GIS for assessing susceptibility to debris flows in Kangding County, Sichuan Province, China. Environmental Earth Sciences, 75(1), 16. doi:10.1007/s12665-015-5033-z
    Dilley, M., & Mundial, B. (2005). Natural Disaster Hotspots: A Global Risk Analysis.
    Egashira, S., & Itoh, T. (2004). Numerical Simulation of Debris Flow. Web journal of Japan Society of Fluid Mechanics, 12(2), 33-43. (In Japanese)
    Egashira, S., Miyamoto, K., & Itoh, T. (1997). Constitutive equations of debris flow and their applicability.
    Elder, J. W. (1959). The dispersion of marked fluid in turbulent shear flow. Journal of Fluid Mechanics, 5(4), 544-560. doi:10.1017/S0022112059000374
    Grelle, G., Rossi, A., Revellino, P., Guerriero, L., Guadagno, F. M., & Sappa, G. (2019). Assessment of Debris-Flow Erosion and Deposit Areas by Morphometric Analysis and a GIS-Based Simplified Procedure: A Case Study of Paupisi in the Southern Apennines. Sustainability, 11(8), 20. doi:10.3390/su11082382
    Horiuchi, S., Iwanami, E., Nakatani, K., Satofuka, Y., & Mizuyama, T. (2012). Development of “Hyper KANAKO”, a debris flow simulation system using with laser profiler data. Journal of Sabo Society, 64(6), 25-31. (In Japanese)

    Hungr, O., Evans, S., Bovis, M., & Hutchinson, J. N. (2001). Review of the classification of landslides of the flow type. Environmental & Engineering Geoscience, 7, 221-238. doi:10.2113/gseegeosci.7.3.221
    Itoh, T., & Egashira, S. (1998). Comparative study of constitutive equations on debris flows. Annual journal of hydraulic engineering, JSCE, 42, 913-918. doi:10.2208/prohe.42.913 (In Japanese)
    Jan, C. D. (2000). Introduction of debris flow. book, ISBN: 957-655-296-6 (In Chinese)
    Mizuyama, T., Abe, S., & Shimohigashi, H. (1987). Reproduction of a debris flow disaster by computer simulation and hydraulic model tests. Journal of Sabo Society, 40(3), 17-22. (In Japanese)
    Mizuyama, T., Kitahara, I., & Hara, Y. (1988). Evaluation of effects of countermeasure works dor debris flows by debris flow simulation model. Journal of Sabo Society, 40(5), 14-21. (In Japanese)
    Nakatani, K., Midoro, T., Horiuchi, S., Satofuka, Y., & Mizuyama, T. (2014). Setting method of 1-dimentional area and 2-dimentional area boundaries in debris flow numerical simulation: using the Hyper KANAKO system equipped with a GIS platform. J. JSNDS, 33, 13-26. (In Japanese)
    Nakatani, K., Wada, T., Satofuka Y., & Mizuyama, T. (2008). Development of an user friendly debris flow simulator equipped with gui. Proceedings of the 4th Symposium on Sediment Disaster, 149-154. (In Japanese)
    O'Brien, J. S., Julien, P. Y., & Fullerton, W. T. (1993). Two‐Dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering, 119(2), 244-261. doi:10.1061/(ASCE)0733-9429(1993)119:2(244)
    O’brien, J., & Julien, P. (1985). Physical properties and mechanics of hyperconcentrated sediment flows. Proc. ASCE HD Delineation of landslides, flash flood and debris flow Hazards.
    Paudel, B., Fall, M., & Daneshfar, B. (2020). GIS-based assessment of debris flow hazards in Kulekhani Watershed, Nepal. Natural Hazards, 101(1), 143-172. doi:10.1007/s11069-020-03867-3
    Shieh, C. L., Jan, C. D., & Tsai, Y. F. (1996). A numerical simulation of debris flow and its application. Natural Hazards, 13(1), 39-54. doi:10.1007/BF00156505

    Shieh, C. L., Jiang, J. H., & Chen, L. J. (1992). Field Investigation of Debris Flow in Hualien and Taitung Counties. Journal of Chinese Soil and Water Conservation, 23(2), 109-122. (In Chinese)
    Shieh, C. L., & Chen, L. J. (1993). A study on the danger ranks of potential debris flows. Journal of Chinese Soil and Water Conservation, 24(1), 13-19. (In Chinese)
    Soil and Water Conservation Bureau, SWCB. (2017). Soil and Water Conservation Handbook. book, ISBN:978-986-05-5344-4 (In Chinese)
    Soil and Water Conservation Bureau, SWCB. (2019). Soil and Water Conservation Handbook. book, ISBN: 978-986-05-8527-8
    Su, W. R., Tsai, Y. F., Lin, L. W., & Chen, Y, Z. (2010). The Study for Natural Disaster Risk Assessment of the Elementary Schools-A Case of the Debris Flow, Flood, and Earthquake. Hwa Kang Geographical Journal, (25), 21-35. (In Chinese)
    Takahashi, T. (1977). A mechanism of occurrence of mud-debris flows and their characteristics in motion, Disaster Prevention Research Institute Annals, Vol. 20, No. In: B-2.
    Takahashi, T. (1980). Debris Flow on Prismatic Open Channel. Journal of the Hydraulics Division, 106(3), 381-396.
    Takahashi, T. (1991). Debris flow: Published for the International Association for Hydraulic Research by A.A. Balkema.
    Takahashi, T. (2014). Debris flow. [electronic resource] : mechanics, prediction, and countermeasures (2nd ed. ed.): CRC Press.
    Takahashi, T & Tsujimoto, H. (1984). Numerical simulation of flooding and deposition of a debris flow. (In Japanese)
    Takahashi, T., Nakagawa, H., Harada, T., & Yamashiki, Y. (1992). Routing Debris Flows with Particle Segregation. Journal of Hydraulic Engineering, 118(11), 1490-1507. doi:10.1061/(ASCE)0733-9429(1992)118:11(1490)
    Tsai, Y. F. (1999). Study on the configurations of debris-flow fan. National Cheng Kung University. (In Chinese)
    Tsai, Y. J., Syu, F. T., Lee, S. P., & Shieh, C. L. (2019). Numerical modeling of debris flows and landslides triggered by an extreme rainfall event. Conference: 7th International Conference on Debris-Flow Hazards Mitigation (Poster)
    Tseng, W. H. (2002). Numerical study of debris flow and its transition behavior. National Cheng Kung University. (In Chinese)
    Tseng, W. H., Hsu, Y. C., Lai, W. C., Jan, C. D., & Shieh, C. L. (2011). The Debris Flow Numerical Model with Erosion and Deposition Effects: An Application in Jiaopu Creek, Hsiaolin Village. Journal of Chinese Soil and Water Conservation, 42(3), 219-227. (In Chinese)
    Wang, L. & Liu, H. (2006). An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science, 20(2), 193-213.
    Zhang, Y. H., Ge, T. T., Tian, W., & Liou, Y. A. (2019). Debris Flow Susceptibility Mapping Using Machine-Learning Techniques in Shigatse Area, China. Remote Sensing, 11(23), 26. doi:10.3390/rs11232801

    Web source:
    The international disasters database, EM-DAT (2020). https://emdat.be/
    Soil and Water Conservation Bureau, SWCB (2020). https://246.swcb.gov.tw/

    下載圖示 校內:立即公開
    校外:2025-08-17公開
    QR CODE