簡易檢索 / 詳目顯示

研究生: 王柏崴
Wang, Bo-Wei
論文名稱: 應用 FLOW-3D 分析閘門開啟速率對細泥漿體在 L-Box 坍流之影響
Application of FLOW-3D to analyze the effect of sluice-gate opening speed on the slump-flow of sediment slurry in a L-Box channel
指導教授: 詹錢登
Jan, Chyan-Deng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 88
中文關鍵詞: 細泥漿體坍流度流變參數L-BoxFLOW-3D
外文關鍵詞: sediment slurry, slump-flow, rheological parameters, L-Box, FLOW-3D
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 土石流體之流變性質是研究土石流流動特性的重要參數之一,但由於測量上的限制,傳統的流變器不適合用於現地泥石漿體流變參數的量測,為此,前人曾利用 L-Box 坍流試驗間接推估漿體之流變參數,並發現 L-Box 試驗中漿體之坍流程度不僅由流變參數所控制,也取決於 L-Box 閘門開啟的速率。
      本研究利用小型 L-Box 進行細泥漿體之坍流試驗,並使用三維計算流體力學軟體 FLOW-3D 進行模擬,探討利用 FLOW-3D 模擬實際漿體坍流之可行性,而後依據 FLOW-3D 數值模擬結果,分析(1)不同閘門速率對漿體流動剖面之影響、(2)不同閘門速率下,不同黏滯係數之漿體對流動剖面之影響,以及(3)不同閘門速率下,不同屈服應力漿體對流動剖面之影響。
      本研究結果顯示:數值模擬結果與試驗結果相當一致,說明利用 FLOW-3D 模擬 L-Box 坍流試驗有其可行性。本試驗材料(細泥漿體)經測量之流變特性符合 Schwedoff-Bingham 模型,但由模擬中得出,細泥漿體在流動過程中具有較高的剪應變率(大於10 1/s),故在 L-Box 數值模擬時可直接假設其流變曲線為Bingham模型。此外,由模擬和試驗中發現,當漿體屈服應力低於 20 Pa 且黏滯係數低於 0.5 Pa.s 時,會因其低塑性而坍流至模型端壁造成反彈,影響試驗結果。
      最後,在本研究著重的討論項目中證實,閘門開啟的速率會對小型 L-Box 之坍流結果造成影響,但該影響僅在一速度區間內作用,若閘門速度快(慢)於此範圍,則不再影響其最終流動剖面。而在流變參數上,閘門速率對坍流程度造成之影響,相對於黏滯係數有一上限值,而對屈服應力則有一下限值,換言之,若流變參數高於某一臨界黏滯係數(或低於某一臨界屈服應力),則閘門速率就不再對流動剖面造成影響。

    The L-Box experiment is a method for indirectly estimating rheological parameters using the degree of slurry slump-flow. However, previous studies have found that the slump-flow of the slurry in the L-Box experiment is not only controlled by rheological parameters, but also affected by the sluice-gate opening speed. In this study, FLOW-3D is used to simulate the Smaller L-Box (henceforth referred to as L-Box)experiment with the material as sediment slurry, to study the feasibility of using FLOW-3D to simulate the L-Box experiment, and to analyze the relationship between the pair of sluice-gate opening speed and different rheological parameters. The results show that it is feasible to use FLOW-3D to simulate the L-Box experiment , and the sluice-gate speed will indeed affect the experimental results of the L-Box, but the effect of the sluice-gate on the slump-flow has an upper and lower limit on speed. In addition, if the rheological parameters are higher than a certain viscosity coefficient (or lower than a certain yield stress), the gate speed will no longer have an effect on the flow profile(slump-flow).

    中文摘要 I Abstract II 誌 謝 VI 目 錄 VII 圖目錄 X 表目錄 XIII 第一章 緒論1 1-1 研究動機1 1-2 研究目的1 1-3 本文架構3 第二章 文獻回顧5 2-1 坍流度試驗與流變關係間之研究5 2-2 利用L-Box探討流變參數與流動剖面關係之試驗6 2-3 改良L-Box之流變試驗研究11 2-4 L-Box之數值分析研究13 2-5 FLOW-3D應用之研究14 第三章 研究方法16 3-1 FLOW-3D數值模式簡介16 3-1-1 FLOW-3D 基本理論17 3-1-2 FLOW-3D 控制方程式18 3-1-3 流體體積法(Fractional Volume of Fluid Method)19 3-1-4 FAVORTM技術21 3-2 FLOW-3D之數值方法22 3-2-1 網格處理方法22 3-2-2 FLOW-3D 數值穩定24 3-2-3 GMO模型(General Moving Objects Model)25 3-3 小型L-Box之試驗28 3-3-1 試驗儀器及設備28 3-3-2 試驗材料33 3-3-3 試驗結果36 第四章 L-Box數值模擬39 4-1 L-Box數值模型之建立40 4-1-1 L-Box物理模型40 4-1-2 網格大小的選擇41 4-1-3 L-Box數值模擬網格建立45 4-1-4 邊界條件及初始條件設定46 4-1-5 L-Box數值模擬之參數設定47 4-2 模式之驗證49 4-2-1 物理量定義49 4-2-2 試驗與數值模擬之結果50 4-2-3 試驗與數值模擬之差異56 4-3 不同剪力模數對模擬結果之影響57 第五章 分析結果與討論61 5-1 閘門開啟速率對坍流度之影響61 5-2 不同濃度間閘門開啟速率之差異67 5-3 屈服應力與黏滯係數對閘門開啟速率之敏感性72 5-3-1 黏滯係數與流動剖面之關係76 5-3-2 黏滯係數與閘門開啟速率之關係77 5-3-3 屈服應力與流動剖面之關係78 5-3-4 屈服應力與閘門開啟速率之關係80 第六章 結論與建議83 6-1 研究結論83 6-2 研究建議84 參考文獻 85

    1. Baluch, M.H., Rahman, M.K., Mukhtar, F., and Malik, M.A., “ A 2-D Computational Fluid Dynamics Simulation of Slump Flow and L-Box Test on SCC Using ANSYS/FLUENT.” 2nd International Engineering Mechanics and Materials Specialty Conference, Ottawa, Ontario., (2011).
    2. Chaparian, E., Nasouri, B., ” L-box—A tool for measuring the “yield stress”: A theoretical study.” PHYSICS OF FLUIDS 30, 083101., (2018).
    3. Deeb, R., Kulasegaram, S., Karihaloo, B. L., ” 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part II: L-box test and the assessment of fibre reorientation during the flow.” Comp. Part. Mech.,391–408., (2014),
    4. Dey, L., Jan, C. D., Wang, J. S.,” Effects of particle fractions on the Bingham yield stress and viscosity of fine-coarse particle suspensions.” Journal of Mountain Science volume 18, 2960–2970., (2021).
    5. Fang, X., Jiang, S., Alam, S.,” Numerical Simulations of Efficiency of Curb-Opening Inlets.” Journal of Hydraulic Engineering, ASCE, 136, pp. 62-66., (2010).
    6. Flow Science, Inc., ” FLOW-3D Documentation Release 10.1.0.”, (2012).
    7. Gao, J., Fourie, A., ” Spread is better: An investigation of the mini-slump test.” Minerals Engineering 71, 120–132., (2015).
    8. Hosseinpoor, M., Khayat, K. H., Yahia, A., ” Numerical simulation of self-consolidating concrete flow as a heterogeneous material in L-Box set-up: coupled effect of reinforcing bars and aggregate content on flow characteristics.” Materials and Structures, 50:163., (2017).
    9. Hosseinpoor, M., Khayat, K. H., Yahia, A., ” Numerical simulation of self-consolidating concrete flow as a heterogeneous material in L-Box set-up: Effect of rheological parameters on flow performance.” Cement and Concrete Composites 83, 290–307.,(2017).
    10. Jan, C. D, Yang, C. Y., Hsu, C. K., Dey L., ” Correlation between the slump parameters and rheological parameters of debris flow.” The 7th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Monitoring, Modeling, and Assessment, Association of Environmental and Engineering Geologists, 323-329., (2019).
    11. Johnson, M. C., Savage, B. M., “ Physical and Numerical Comparison of Flow over Ogee Spillway in the Presence of Tailwater.” Journal of Hydraulic Engineering, ASCE, 132, pp. 1353-1357., (2006).
    12. Kurokawa, Y., Tanigawa, Y., Mori, H., and Komura, R., “ A study on the slump test and slump-flow test of fresh concrete.” Transac-tions of the Japan Concrete Institute, 16, 25-32., (1994).
    13. Nguyen, T. L. H., Roussel, N., Coussot, P., ” Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid.” Cement and Concrete Research 36, 1789–1796., (2006).
    14. Ozmen-Cagatay, H. Kocaman, S., “Investigation of Dam-Break Flow Over Abruptly Contracting Channel With Trapezoidal-Shaped Lateral Obstacles.” Journal of Fluids Engineering, ASME, 134, pp.081204-1-081204-7, (2012).
    15. Petersson, Ô., Hakami, H., “ Simulation of SCC – Laboratory Experiments and numerical modelling of Slump Flow and L-box Tests.” Proc. of the 2nd Int. Symp. SCC, Tokyo., (2001).
    16. Rousse, N., ” The LCPC BOX: a cheap and simple technique for yieldstress measurements of SCC.” Materials and Structures 40, 889–896., (2007).
    17. Roussel, N., ” Three-dimensional numerical simulations of slump tests.” ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 12., (2004).
    18. Roussel, N., Coussot, P.,” “ Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow.” The Society of Rheology, Inc.J. Rheol., 49s3d, 705-718 ., (2005).
    19. Roussel, N., Geiker, M. R., Dufour, F., Thrane,L. N., Szabo, P., ” Computational modeling of concrete flow: General overview.” Cement and Concrete Research 37, 1298–1307., (2007).
    20. Shan, Z., Yu, Z., Shi, J., ” Experimental investigation of flow of fresh self-compacting concrete in improved L-box.” Construction and Building Materials 84, 30–38., (2015).
    21. Thrane, L. N., Szabo, P., Geiker, M., Glavind, M., Stang, H., ” Simulation of the Test Method “L-Box” for Self-Compacting Concrete.” ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 12., (2004).
    22. Widjaja, B., Lee, S. H. H., ” Flow box test for viscosity of soil in plastic and viscous liquid states.” Soils and Foundations 53, 35–46., (2013).
    23. 「土石災害在坡地上之發生機制探討— 子計畫:土石流體應力本構關係時變性之試驗研究(3/3)」,行政院國家科學委員會補助專題研究計畫,國立成功大學,(2010)。
    24. 王志賢,「粗顆粒材料對土石流體流變特性影響之實驗研究」,國立成功大學水利及海洋工程學系研究所碩士論文,(2000)。
    25. 王裕宜、詹錢登、嚴碧玉,「泥石流體結構和流變特性」,湖南科學技術出版社,(2001)。
    26. 杜昀,「以移動球法量測土石漿體及新伴混凝土之流變性」,國立雲林科技大學工程科技研究所博士論文,(2004)。
    27. 林煒程,「FLOW-3D模式運用於異重流運移數值模擬」,長榮大學土地管理與開發學系研究所碩士論文,(2011)。
    28. 徐郁超,「導流墩對漏斗式排砂器內流場穩定效果之研究」,國立成功大學水利及海洋工程學系研究所碩士論文,(2004)。
    29. 郭峰豪,「細泥漿體與顆粒混合漿體時變性流變關係之研究」,國立成功大學水利及海洋工程學系研究所碩士論文,(2010)。
    30. 陳俞任,「以 Flow-3D 模擬內孤立波越過障礙物之行為」,國立中山大學海洋環境及工程學系研究所碩士論文,(2012)。
    31. 陳柚屹,「土壤細料塑性對於土石流流變行為之影響」,國立雲林科技大學營建工程系研究所碩士論文,(2004)。
    32. 楊政翰,「FLOW-3D應用於土石流防砂壩前流場及衝擊力研究」,國立成功大學水利及海洋工程學系研究所碩士論文,(2008)。
    33. 詹錢登,「土石流概論」,科技圖書股份有限公司,(2000)。
    34. 詹錢登,張雅雯,郭峰豪、羅偉誠,「固體顆粒對賓漢流體流變參數之影響」,(2009)。
    35. 蕭凱文,「應用FLOW-3D模擬斜坡矩形束縮渠道之斜震波研究」,國立成功大學水利及海洋工程學系研究所碩士論文,(2014)。
    36.蕭凱文,「應用 FLOW-3D 模擬斜坡矩形束縮渠道之斜震波研究」,國立成
    功大學水利及海洋工程學系研究所碩士論文,(2014)。

    無法下載圖示 校內:2027-06-24公開
    校外:2027-06-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE