簡易檢索 / 詳目顯示

研究生: 李世華
Lee, Shi-Hua
論文名稱: 電動載具用導軌型非接觸式感應饋電軌道之研製
Study on Guideway Type Contactless Power Transmission Track for Electric Vehicles
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 非接觸式導軌型饋電軌道
外文關鍵詞: contactless, guideway type, power transmission track
相關次數: 點閱:90下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製導軌型非接觸式感應耦合結構,俾用以建構非接觸式感應饋電軌道系統。其係藉由感應電能傳輸系統不需電源線連接之特性,在特定場合中鋪設軌道,使載具於軌道上移動時可持續獲得電能。文中首先針對不同型式之感應耦合結構進行模擬,並對各結構之磁路特性作分析與探討,進而研製適用於饋電軌道系統之感應耦合結構,藉其建置一長120公分、寬40公分之導軌型非接觸式感應饋電軌道。為提高非接觸式饋電軌道之利用率,系統中藉由單晶片控制電路及電壓感測取樣電路來偵測載具所在位置,並開啟相對應之區塊,藉以完成軌道分段激發控制機制。最後經實驗量測,所提之導軌型感應耦合結構於氣隙8至12公分時電能傳輸效率為60%以上,氣隙為8至14公分時亦可維持在50%以上,其中最高電能傳輸效率達67.1%,且最高輸出功率約為160瓦特。

    The purpose of this thesis is to study the contactless inductive power transmission technique for electric vehicle system. First, several kinds of coupled structures are simulated and analyzed. Then the inductive structure is used to build up a contactless power transmission track. Furthermore, the length and width of the track are 120 centimeters and 40 centimeters, respectively. The primary side circuits utilize microcontroller and voltage sensing circuit to achieve section excitation for enhancing system effectively. Finally, the contactless inductive power transmission track system is implemented. The power transmission efficiency of the guideway type contactless inductive coupled structure is up to 60% when the air gap is between 8 and 12 centimeters. Besides, the efficiency above 50% has been achieved for coupled structures between 8 centimeters and 14 centimeters air gap. The highest efficiency is 67.1% through 9 centimeters air gap, and the highest power of load is approximately 160 W.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 2 1-3 研究方法 6 1-4 論文大綱 7 第二章 非接觸感應耦合原理與特性 8 2-1 前言 8 2-2 感應電能傳輸之工作原理 8 2-3 感應線圈之特性 9 2-4 非接觸式感應耦合結構種類 9 2-5 非理想變壓器等效模型分析 14 2-6 耦合係數與互感 15 2-7 系統整體架構 16 第三章 導軌型感應耦合結構模擬與研製 17 3-1 前言 17 3-2 整體系統架構簡述 17 3-3 驅動電路設計與選用 18 3-4 初級側感應耦合結構模擬與分析 19 3-5 次級側感應耦合結構模擬與分析 27 3-6 導軌型感應耦合結構模擬與分析 32 3-7 磁阻計算 33 3-8 諧振電路 34 第四章 導軌型饋電軌道系統硬體電路 37 4-1 前言 37 4-2 整體系統電路架構 37 4-3 初級側電路 38 4-3-1 Class E變流器 38 4-3-2 PIC單晶片控制電路 42 4-3-3 軌道分段激發控制機制 43 4-3-4 感測電壓取樣電路 45 4-3-5 數位類比轉換電路 47 4-3-6 壓控振盪控制電路 48 4-4 次級側電路 49 4-4-1 整流濾波器 49 4-4-2 降壓式轉換器 49 4-5 非接觸式感應饋電軌道系統設計流程 51 第五章 系統實驗結果 54 5-1 前言 54 5-2 IsSpice電路模擬 54 5-3 系統規格與硬體電路 55 5-4 系統實驗結果與波形量測 57 5-5 耦合結構量測結果與分析 63 第六章 結論與未來研究方向 68 6-1 結論 68 6-2 未來研究方向 69 參考文獻 70

    [1] Y. H. Liu, S. C. Wang, and R. C. Leou, “A novel primary-side controlled contactless battery charger,” in Proc. IEEE PEDS, 2007, pp. 320-324.
    [2] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC, 2008, pp. 4320-4325.
    [3] R. Mecke and C. Rathge, “High frequency resonant inverter for contactless energy transmission over large air gap,” in Proc. IEEE PESC, 2004, pp. 1737-1743.
    [4] D. Marioli, E. Sardini, M. Serpelloni, and A. Taroni, “High frequency resonant information between sensor and conditioning electronics,” IEEE Trans. Instrum. Meas., vol. 57, no. 2, pp. 303-308, 2008.
    [5] B. H. Soong, Y. L. Sum, W. Liu, and S. Ramachandran, “Characterizing wire wound inductor coils for optimized wireless power transfer,” in Proc. IEEE AIM, 2009, pp. 469-474.
    [6] W. Zhang, Q. Chen, S. C. Wong, C. K. Tse, and X. Ruan, “A novel transformer for contactless energy transmission systems,” in Proc. IEEE ECCR, 2009, pp. 3218-3224.
    [7] J. Sallan, J. L. Villa, A. Llombart, and J. F. Sanz, “Optimal design of ICPT systems applied to electric vehicle battery charge,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2140-2149, 2009.
    [8] W. Zhou and H. Ma, “Winding structure and circuit design of contactless power transfer platform,” in Proc. IEEE IECON, 2008, pp. 1063-1068.
    [9] J. Achterberg, E. A. Lomonova, and J. de Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, 2008.
    [10] X. Liu and S. Y. R. Hui, “Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202-2210, 2007.
    [11] S. Y. R. Hui and W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” in Proc. IEEE PESC, 2004, pp. 638-644.
    [12] J. A. Taylor, Z. N. Low, J. Casanova, and J. Lin, “A wireless power station for laptop computers,” in Proc. IEEE RWS, 2010, pp. 625-628.
    [13] T. Yazaki, I. Morita, and H. Tanaka, “Demonstration of optical wireless USB 2.0 system with wireless power transfer,” in Proc. IEEE ICCE, 2011, pp. 11-12.
    [14] D. V. Wageningen and T. Staring, “The Qi wireless power standard,” in Proc. IEEE EPC, 2010, pp. 25-32.
    [15] T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, Z. Wang, and Z. Wang, “An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy,” in Proc. IEEE EMBC, 2010, pp. 6531-6534.
    [16] D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. IEEE NEMS, 2010, pp. 604-607.
    [17] P. Cong, M. A. Suster, N. Chaimanonart, and D. J. Young, “Wireless power recharging for implantable bladder pressure sensor,” in Proc. IEEE ICSENS, 2008, pp. 1670-1673.
    [18] T. Imura, H. Okabe, and Y. Hori, “Basic experimental study on helical antennas of wireless power transfer for electric vehicles by using magnetic resonant couplings,” in Proc. IEEE VPPC, 2009, pp. 936- 940.
    [19] Y. Hori, “Future vehicle society based on electric motor, capacitor and wireless power supply,” in Proc. IEEE IPEC, 2010, pp. 2931-2934.
    [20] U. K. Madawala, D. J. Thrimawithana, and Nihal Kularatna, “An ICPT-supercapacitor hybrid system for surge-free power transfer,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3287-3297, 2007.
    [21] X. Zhang, Q. Yang, H. Chen, Y. Li, and Z. Yan, “The application of non-contact power transmission technology (NPT) in the modern transport system,” in Proc. IEEE ICMA, 2010, pp. 345-349.
    [22] K. Finkenzeller, RFID HANDBOOK. 2nd ed., Wiley, 2003.
    [23] T. C. Beh, T. Imura, M. Kato, and Y. Hori, “Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching,” in Proc. IEEE ISIE, 2010, pp. 2011-2016.
    [24] J. de Boeij, E. Lomonova, J. Duarte, and A. Vandenput, “Contactless energy transfer to a moving actuator,” in Proc. IEEE IAS, 2006, pp. 2020-2025.
    [25] S. H. Lee and R. D. Lorenz, “Development and validation of model for 95% efficiency, 220W wireless power transfer over a 30cm air-gap,” in Proc. IEEE ECCE, 2010, pp. 885-892.
    [26] J. Park, Y. Tak, Y. Kim, Y. Kim, and S. Nam, “Investigation of adaptive matching methods for near-field wireless power transfer,” IEEE Trans. Antennas Propag., vol. 59, no 5, pp. 1769-1773, 2011.
    [27] Z. Yan, Q. Yang, H. Chen, C. Zhang, and G. Xu, “Modeling and experimental analysis of helical resonator for wireless power transmission system,” in Proc. IEEE ICECE, 2010, pp. 3886-3892.
    [28] I. J. Yoon and H. Ling, “Realizing efficient wireless power transfer using small folded cylindrical helix dipoles,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 846-849, 2010.
    [29] S. L. Ho, J. Wang, W. N. Fu, and S. Mingui, “A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1522-1525, 2011.
    [30] J. Wang, S. L. Ho, W. N. Fu, and S. Mingui, “A comparative study between witricity and traditional inductive coupling in wireless energy transmission,” in Proc. IEEE CEFC, 2010, pp. 1.
    [31] C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 7, pp. 536-540, 2010.
    [32] H. Hirayama, Y. Okuyama, N. Kikuma, and K. Sakakibara, “An consideration on equivalent circuit of wireless power transmission,” in Proc. IEEE ANTEM, 2010, pp. 1-4.
    [33] Y. Zou, X. Huang, L. Tan, Y. Bai, and J. Zhang, “Current research situation and developing tendency about wireless power transmission,” in Proc. IEEE ICECE, 2010, pp. 3507-3511.
    [34] T. Imura, “Study on maximum air-gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit,” in Proc. IEEE ISIE, 2010, pp. 3664-3669.
    [35] M. Budhia, G. Covic, and J. Boys, “A new IPT magnetic coupler for electric vehicle charging systems,” in Proc. IEEE IECON, 2010, pp. 2487-2492.
    [36] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact contactless power transfer system for electric vehicles,” in Proc. IEEE IPEC, 2010, pp. 807-813.
    [37] N. O. Sokal and A. D. Sokal, “Class E-A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168-176, 1975.
    [38] 賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
    [39] 陳勝建,非接觸式編織型饋電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
    [40] 童子原,電動載具用非接觸式感應饋電軌道:高功率交流正弦激勵電源系統之研製,國立成功大學電機工程學系碩士論文,2010年。
    [41] 蘇哲彬,電動載具用非接觸式感應饋電軌道:交錯式編織型陣列區塊感應耦合系統之研製,國立成功大學電機工程學系碩士論文,2010年。
    [42] 張孟詔,電動載具用非接觸式感應饋電軌道:載具側三埠式充電/供電系統,國立成功大學電機工程學系碩士論文,2010年。

    下載圖示 校內:2016-08-17公開
    校外:2016-08-17公開
    QR CODE