簡易檢索 / 詳目顯示

研究生: 葉廣聲
Yei, Guang-Sheng
論文名稱: 不繞射加速光線
Nondiffracting Accelerating Waves
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 71
中文關鍵詞: 不繞射光束不繞射彎曲光束表面電漿
外文關鍵詞: nondiffracting accelerating beams, paraxial appromxiatiom, plsamonic, nonparaxial accelerating beams
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不繞射的彎曲光束近因為具有不繞射特性、在自由空間中無外力加速以及自我恢復的良好特性,所以這幾年來一直被廣泛討論。而Airy加速光線就是最早被討論的不繞射的彎曲光束,它的概念是來自於1978年時,Berry M.V.在量子力學上提出Airy波包在空間上是一個不繞射的解並且是一個拋物線軌跡。而在光學上,Airy加速光線是來自於Helmholtz方程式在近軸近似的解,並且其光束無法克服較大的彎曲軌跡並且很快就會在彎曲處消逝掉。於是非近軸近的不繞射彎曲光束就顯得很重要,像是圓形加速光線以及Mathieu加速光線,這兩者分別來自於Helmholtz方程式在圓柱座標下的解以及在橢圓座標下的解。於是在本論文將利用FDTD(Finite Difference Time Domain)模擬這三種不繞射的加速彎曲光束:Airy加速光線、圓形加速光線以及Mathieu加速光線並且與理論的結果做比較。並且為了更了解這三種光束的特性,我們還分析了Airy加速光線、圓形加速光線以及Mathieu加速光線三者的波印庭向量各分量的貢獻。

    若要產生Airy波包,傳統上我們是讓非秒雷射透過一個cubic相位片再透過透鏡,然而這個方法並不是適用於微小的積體光路裡,所以我們透過特殊的金屬狹縫排列使得通過去的TM波產生Airy加速光線。

    The non-diffracting accelerating beams exhibit special wave propagation properties such as beam curving or accelerating without external forces and self-healing after obstacles. Airy accelerating beam was first proposed for electron wave function in quantum mechanics in 1979 and then demonstrate in optical waves in 2007. The optical Airy accelerating beam is a solution of the paraxial wave equation which is similar to the Schrodinger equation and exhibits a parabolic trajectory. However, the Airy accelerating breaks down at large angle bending due to its paraxial approximation. Several non-paraxial accelerating beams were proposed in 2012. For example, the circular accelerating beam and the Mathieu accelerating beam are the non-paraxial solution of the Helmholtz equation in the polar coordinates and the elliptical coordinates respectively. In this thesis, three types of non-diffracting accelerating beams: the Airy accelerating beam, circular accelerating beam and the Mathieu accelerating beam were analyzed by Finite-Difference Time-Domain method.

    The difference between the non-paraxial accelerating beams and the paraxial Airy accelerating beam were compared and discussed. Specifically, the electric field and magnetic field contributions and the Poynting vectors were shown for both the TE and TM modes. The self-healing properties of these three type accelerating beams though the small obstacles were demonstrated.

    To realize the generation of the Airy accelerating beam, metallic slit array were designed to lunch the Airy accelerating with TM waves. These non-diffracting accelerating beams might have potential applications in optical tweezers for moving nano-particles in curved trajectories and manipulating bio cells in tissues.

    考試合格證明.................................................I 中文摘要...................................................II Abstract.................................................III 誌謝......................................................IV 中文目錄....................................................V 圖目錄....................................................VII 第一章 不繞射加速曲光線.....................................1 1-1 不繞射光線的介紹.....................................1 1-2 不繞射加速光線的介紹..................................2 第二章 Airy加速光線........................................4 2-1 Airy加速光線的介紹 ...................................4 2-2 Airy加速光線的自我恢復特性...........................11 第三章 非軸近似的圓形軌跡加速光線............................13 3-1 非近軸近似的圓形軌跡加速光線的介紹.....................13 3-2 圓形加速光線軌跡的分析與Airy加速光線的比較..............19 3-3 圓形加速光線的自我恢復特性............................21 第四章 非軸近似的Mathieu加速光線............................23 4-1 非軸近似的Mathieu加速光線的介紹.......................23 4-2 橢圓坐標系下的Helmholtz方程式........................24 4-3 Mathieu方程式的解 ..................................26 4-3-1 角度mathieu方程式...................................26 4-3-2 徑向mathieu方程式 ..................................32 4-4 Mathieu光線的數值模擬與分析 ..........................34 4-5 Mathieu加速光線的自我恢復特性........................46 第五章 利用金屬狹縫產生Airy加速光線..........................48 5-1 利用金屬狹縫產生Airy加速光線的簡介.....................48 5-2 表面電漿...........................................49 5-3 金屬狹縫排列產生Airy加速光線的模擬結果分析..............52 第六章 彎曲加速光線上波印廷向量的分析.........................58 結論 ..................................................64 未來展望 ..................................................66 參考資料 ..................................................68

    [1] J. Durnin, J. J. Miceli, Jr. , and J. H. Eberly, " Diffraction free beams, "Phys. Rev. Lett. 58, 1499-1501 (1987).
    [2]Joseph Rosen, Boaz Salik, and Amnon Yariv," Pseudo-nondiffracting beams generated by radial harmonic functions, "J. Opt. Soc. Am. A 12 (1995)
    [3] Rong Liu, Bi-Zhen Dong, and Ben-Yuan Gu, "Diffractive phase elements that synthesize color pseudo-nondiffracting beams," Opt. Lett .37, 8219-8223 (1998)
    [4] L. M. Zhao, D. Y. Tang and J. Wu, " Gain-guided soliton in a positive group-dispersion fiber laser,"Opt. Lett. 31, 1788-1790 (2006).
    [5] Allison, S W, Gillies, G T, " Observations of and applications for self-imaging in optical fibers, " Applied Optics, 33 , 1802-1805 (1994)
    [6] Berry, M. V. and Balazs, N. L., “Nonspreading wave packets,” Am. J. Phys., 47(3), 264-267 (1979).
    [7] G. A. Siviloglou and D. N. Christodoulides, " Accelerating finite energy Airy beams, "Opt. Lett. 32,979 (2007); G.A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, " Observation of Accelerating Airy Beams, " Phys. Rev. Lett. 99, 213901 (2007).
    [8] A. Chong, W. H. Renninger, D.N. Christodoulides, and F.W. Wise,” Airy-Bessel wave packets as versatile linear light bullets,” Nature Photon. 4, 103 (2010).
    [9] Baumgartl, J., Mazilu, M., and Dholakia, K., “Optically mediated particle clearing using Airy wavepackets,”Nature Photonics, 2, 675-678 (2008).
    [10] Siviloglou,G. A., Broky, J., Dogariu, A., and Christodoulides, D. N., “Observation of Accelerating AiryBeams,” Phys. Rev. Lett, 99, 213901 (2007).
    [11] Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A., and Arie, A., “Nonlinear generation and manipulation of Airy beams,” Nature Photonics, 3, 395-398 (2009).
    [12] Dolev, I. and Arie, A., "Three wave mixing of airy beams in a quadratic nonlinear photonic crystals," Appl.Phys. Lett., 97, 171102 (2010).
    [13] Hwang, C.-Y., Choi, D., Kim, K.-Y., and Lee, B., "Dual Airy beam," Opt. Express, 18, 23504-23516 (2010).
    [14] Hwang, C.-Y., Kim, K.-Y., and Lee, B., "Bessel-like beam generation by superposing multiple Airy beams,"Opt. Express, 19, 7356-7364 (2011).
    [15] Lim, Y., Choi, D., Lee, B., and Jung, J., "Non-diffracting plasmonic beaming analogous to Airy beam," The 5thInternational Conference on Surface Plasmon Photonics, 99, (2011).
    [16] P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R.Morandotti, X. Zhang, and Z. Chen," Generation of linear and nonlinear nonparaxial accelerating beams,"Opt. Lett. 37, 2820(2012).
    [17] I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev," Nondiffracting Accelerating Wave Packets of Maxwell’s Equations,"Phys. Rev. Lett. 108, 163901 (2012); I. Kaminer, J.Nemirovsky, and M. Segev," Self-accelerating self-trapped nonlinear beams of Maxwell's equations," Opt. Express 20, 18827 (2012).
    [18]http://mathworld.wolfram.com/HelmholtzDifferentialEquationEllipticCylindricalCoordinates.html; http://www.mathworks.com/matlabcentral/fileexchange/22081
    [19] Peng Zhang, Yi Hu, Tongcang Li,1 Drake Cannan, Xiaobo Yin, Roberto Morandotti, Zhigang Chen, and Xiang Zhang “Nonparaxial Mathieu and Weber Accelerating Beams,”PhysRevLett.109.193901
    [20] J. C. Gutie´rrez-Vega, M.D. Iturbe-Castillo, and S. Cha´vez-Cerda," Alternative formulation for invariant optical fields: Mathieu beams,"Opt. Lett. 25, 1493 (2000).
    [21]E. Mathieu “Le mouvement vibratoire d'une membrane de form elliptique," Jour. de Math. Pures at Appliquees (Jour. de Liouville) 13, 137-203 (1868).
    [22] M. Abramowitz and I. Stegun Handbook of Mathematical Functions (New York, Dover,1964).
    [23] I. S. Gradshteyn and I. M. Ryzhik Tables of Integrals, Series, and Products (Academic Press, San Diego, 1994).
    [24] E. L. Ince Ordinary Differential Equations (Dover, New York, 1967).
    [25] N. W. McLachlan Theory and Application of Mathieu Functions (Oxford Press, London,1951).
    [26] J. A. Stratton Electromagnetic Theory (Mc-Graw Hill New York, 1941).
    [27] J. A. Stratton and P. M. Morse Elliptic Cylinder and Spheroidal Wave Functions Including Tables of Separation Constants and Coe_cients (John Wiley & Sons, New York, 1941).
    [28] E. T. Whittaker and G. N. Watson A Course of Modern Analysis (Cambridge University Press, Cambridge, 1950).
    [29] E. T. Kirkpatrick, “Tables of values of the modified Mathieu functions," Mathematics of Computation 14 118-129 (1960).
    [30] J. C. Gutierrez-Vega, Formal analysis of the propagation of invariant optical fields in elliptic coordinates, Ph. D. Thesis, INAOE, Mexico, 2000.
    [31] J. J. Stamnes and B. Spjelkavik “New method for computing eigenfunctions (Mathieu functions) for scattering by elliptical cylinders," Pure Appl. Opt. 4 251-62 (1995).
    [32] J. J. Stamnes “Exact two-dimensional scattering by perfectly reecting elliptical cylinders,strips and slits," Pure Appl. Opt. 4 841-55 (1995).
    [33] C. Alpmann, R. Bowman, M.Woerdemann, M. Padgett, and C. Denz, "Mathieu beams as versatile light moulds for 3D micro particle assemblies," Opt. Express, 20,26085-26091(2010)
    [34] Miguel A. Bandres and Julio C. Gutiérrez-Vega, "Ince–Gaussian beams ," Opt. Lett, 29,144-146(2004)
    [35] S. Cha´vez-Cerda, J. C. Gutie´rrez-Vega, and G. H. C. New, "Elliptic vortices of electromagnetic wave fields, " Opt. Lett. 26, 1803 (2001).
    [36] P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N.
    Christodoulides, “Curved plasma channel generation using ultraintense
    Airy beams,” Science, vol. 324, no. 5924, pp. 229–232, 2009.
    [37] H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T.
    Gao, “Beam manipulating by metallic nano-slits with variant widths,”
    Opt. Express, vol. 13, no. 18, pp. 6815–6820, 2005.
    [38] D. Choi, Y. Lim, S. Roh, I.-M. Lee, J. Jung, and B. Lee, “Optical beam
    focusing with a metal slit array arranged along a semicircular surface
    and its optimization by genetic algorithm,” Appl. Opt., vol. 49, no. 7,
    pp. A30–A35, 2010.
    [39] Dawoon Choi, Yongjun Lim, Il-Min Lee, Sookyoung Roh, and Byoungho Lee," Airy Beam Excitation Using a Subwavelength," IEEE Photon. Technol. Lett., vol. 24, no. 16, pp. 1041–1135, Aug. 15, 2012.
    [40] D. Choi, Y. Lim, I.-M. Lee, and B. Lee, "Airy beam manipulation based on the metallic slit array," Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications V, SPIE Optics + Photonics, SPIE Proceedings, vol. 8120, San Diego, CA, USA, paper 8120-39, Aug. 2011
    [41] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon
    subwavelength optics,” Nature, vol. 424, pp. 824–830, Aug. 2003.
    [42] 物理雙月刊,邱國斌、蔡定平著,(廿八卷二期)486-496頁(2006年4月)
    [43] Ido Kaminer, Rivka Bekenstein, Jonathan Nemirovsky, and Mordechai Segev Nondiffracting , “Accelerating Wave Packets Of Maxwell’s Equations”, Phys.
    Rev. Lett. 108, 163901 (2012)
    [44] Fei Zhuang, Xinyue Du, Yuqian Ye, and Daomu Zhao, “Evolution of Airy beams in a chiral medium”, Opt. Lett., 37, 1871(2010)
    [45] Yiska Fattal, Amitay Rudnick, and Dan M. Marom, “Soliton shedding from Airy pulses in Kerr media”, Opt. Express 19(18), 17298–17307 (2011).
    [46] Tal Ellenbogen, Noa Voloch-Bloch, Ayelet Ganany-Padowicz and Ady Arie,” Nonlinear generation and manipulation of airy beam”, Nature Photon.3 ,395-398(2009)
    [47] Ido Dolev and Ady Arie, “Three wave mixing of airy beams in a quadratic nonlinear photonic crystals”, Phys.Rev. Lett. 97, 171102 (2010)
    [48] Peng Zhang, Jai Prakash, Ze Zhang, Matthew S. Mills, Nikolaos K. Efremidis,Demetrios N. Christodoulides, and Zhigang Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams”, Opt. Lett .36, 2883-2885 (2011)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE