| 研究生: |
李瑞騏 Lee, Jui-Chi |
|---|---|
| 論文名稱: |
溶膠凝膠法製作氧化鋅微/奈米結構 Zinc Oxide Nano/Micro Structures by Sol–Gel Derived Films |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 氧化鋅 、皺摺 、溶膠凝膠 |
| 外文關鍵詞: | ZnO, wrinkles, Sol–Gel |
| 相關次數: | 點閱:87 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用一種簡單新穎的方式,利用摻鋁的氧化鋅溶膠凝膠薄膜,在相對較低溫且不使用催化劑的條件下,於矽基板上成長一維的氧化鋅微奈米柱。研究發現,在薄膜進行熱處理前,先以聚二甲基矽氧烷(polydimethylsiloxane, PDMS)平板對薄膜進行熱壓,改善氧化鋅微/奈米柱之成長,得到氧化鋅奈米柱寬度約為240 nm及微米柱之寬度與長度分別約為1及2-3 μm。研究中除了探討利用此製程成長氧化鋅微/奈米柱的機制外,並藉由製程參數的調整,在特定區域選擇性地成長氧化鋅微/奈米柱。
由氧化鋅溶膠凝膠薄膜所得之氧化鋅皺摺微結構,可藉由聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)模板的導引,使其自我規則化排列;由於氧化鋅溶膠凝膠中溶劑擴散力之合力沿著PMMA模板溝槽方向,因此所得到的氧化鋅皺摺均垂直於PMMA模板溝槽。而薄膜與PMMA模板間熱膨脹係數不同,使其扮演主導規則化皺折在溝槽中成長的重要角色,此外,溝槽寬度對氧化鋅皺摺規則化成長亦有影響。
本研究中使用多種不同圖案的PMMA模板,探討模板圖案的幾何形狀與排列對成長氧化鋅皺摺結構之效應。旋鍍於PMMA模板上之氧化鋅溶膠凝膠的厚度不同會改變整體皺摺結構。當PMMA模板圖案是二維排列時,可導引氧化鋅皺摺往兩個以上的方向成長排列。藉由控制PMMA模板圖案及氧化鋅溶膠凝膠薄膜之厚度,並利用氧化鋅皺摺作用於PMMA模板的收縮力,可改變PMMA模板的形狀而得到圓形、六角形與三角形等特殊的複合結構。
利用上述實驗法以PMMA為犧牲材料的概念,在400 ℃下熱處理2 hr,可得到氧化鋅之微流道結構及氧化鋅皺摺結構的疊層。以本方法可製備傳統光學微影及奈米壓印顯影技術難以在簡單步驟中得到之氧化鋅三維立體結構體。
A simple and novel approach demonstrats for the low-temperature (400℃) solid-state growth of 1D ZnO nano/microrods directly from sol–gel-derived Al-doped ZnO films on silicon substrates without catalyst. Hot pressing the films by a PDMS pad before anneal is found to be effective for the creation of ZnO rods. The nanorods fabricated have a diameter of 240 nm while microrods produced have average diameter and length of 1 μm and about 2-3 μm respectively. A possible nucleation mechanism of ZnO rods has also been proposed. By controlling the experimental parameters, site-selective growth of ZnO rods is achieved.
Template-guided self-ordering of wrinkled ZnO microstructures on sol–gel derived ZnO films has been fabricated with polymethymethacrylate (PMMA) templates. The orientation of the ZnO wrinkles is perpendicular to the PMMA trenches due to the presence of resultant solvent diffusion force along the trenches. The difference between the thermal expansion coefficients of the thin film and the templates may play an important role in dominating the integrity of the ordered wrinkles grown in the confined trenches. The effect of the widths of patterns on templates on the growth of wrinkles is studied.
PMMA templates with various patterns are employed to investigate the effects of template geometries on arrangements of the formed ZnO wrinkles. The influence of thickness on the transformation of the entire resulting structures of the spin-coated ZnO sol–gel films is discussed. With 2-dimentional arrangement of PMMA patterns, more than two orientations of wrinkled ZnO can be induced in one template. By controlling the arrangement of PMMA patterns and thickness of ZnO sol–gel films, specific circular, hexagonal, triangular and triangular-star complex structures are produced due to the constrained shrinkage force of the ZnO films applied toward the PMMA side walls during drying. PMMA is employed as a sacrificial material burnt at 400 ˚C for 2 hr. Two types of ZnO micro-fluidic channels are created successfully for further applications. Stacked ZnO stripes with wrinkles could be made by repetition of a template-guided self-ordering of wrinkled ZnO method. By this technique, we can obtain 3-dimentional ZnO structures that conventional photolithography and nano-imprinting lithography are hard to achieve in a few process steps.
[1] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, “ZnO Schottky ultraviolet photodetectors”, J. Cryst Growth 225 (2001) 110
[2] N. J. Dayan, S. R. Sainkar, R. N. Karekar, R. C. Aiyer, “Formulation and characterization of ZnO:Sb thick-film gas sensors”, Thin Solid Films 325 (1998) 254.
[3] N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, Y. Lu, “Epitaxial ZnO piezoelectric thin films for saw filters”, Mat. Sci. Semicon. Proc. 2 (1999) 247.
[4] H. Wei, Y. Wu, N. Lun, and C. Hu, “Hydrothermal synthesis and characterization of ZnO nanorods”, Mat. Sci. Eng. A 393 (2005) 80.
[5] X. Ma, H. Zhang, Y. Ji, J. Xu, and D. Yang, “Sequential occurrence of ZnO nanopaticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution”, Mater Lett. 59 (2005) 3393.
[6] B. Y. Geng, T. Xie, X. S. Peng, Y. Lin, X. Y. Yuan, G. W. Meng, and D. Zhang, “Large-scale synthesis of ZnO nanowires using a low-temperature chemical route and their photoluminescence properties”, Appl. Phys. A 77 (2003) 363.
[7] D. J. Lee, J. Y. Park, Y. S. Yun, Y. S. Hong, J. H. Moon, B. T. Lee, and S. S. Kim, “Comparative studies on the growth behavior of ZnO nanorods by metalorganic chemical vapor deposition depending on the type of substrates”, J. Cryst Growth 276 (2005) 458.
[8] H. W. Kim, N. H. Kim, J. H. Shim, N. H. Cho, and C. M. Lee, “Catalyst-free MOCVD growth of ZnO nanorods and their structural characterization”, J. Mater. Sci-Mater. EL 16 (2005) 13.
[9] J. S. Leea, K. Parka, M. I. Kanga, I. W. Parkb, S. W. Kimc, W. K. Chod, H. S. Hand, and S. Kim, “ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders”, J. Cryst Growth 254 (2003) 423.
[10] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater. 15 (2003) 464.
[11] Z. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, “Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency”, J. Solid State Chem. 177 (2004) 2144.
[12] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals”, J. Cryst. Growth 203 (1999) 186.
[13] Y. N. Xia, G. M. Whitesides, “Soft Lithography”, Angew. Chem. Int. Ed. 37 (1998) 551.
[14] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett. 67 (1995) 3114.
[15] J. Y. Chung, A. J. Nolte, and C. M. Stafford, Diffusion-Controlled, Self-Organized Growth of Symmetric Wrinkling Patterns”, Adv. Mater. 21 (2009) 1358.
[16] N. Geblinger, A. Ismach, and E. Joselevich, “Self-organized nanotube serpentines”, Nat. Nanotechnol. 3 (2008) 195
[17] Y. Chen, D. Bagnall, and T. Yao, “ZnO as a novel photonic material for the UV region”, Mat. Sci. Eng. B-Solid. 75 (2000) 190.
[18] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka, and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation”, Appl. Surf. Sci. 142 (1999) 233.
[19] S. Fujihara, Y. Ogawa, and . Kasai, “Tunable Visible Photoluminescence from ZnO Thin Films through Mg-Doping and Annealing”, Chem. Mater. 16 (2004) 2965.
[20] H. Ohta, M. Orita, M. Hirano, and H. Hosono, “Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO”, J. Appl. Phys. 89 (2001) 5720
[21] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells”, Nat. Mater. 4 (2005) 455.
[22] N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, “Low-Temperature Fabrication of Light-Emitting Zinc Oxide Micropatterns Using Self-Assembled Monolayers”, Adv. Mater. 14 (2002) 418.
[23] X. Jiaqiang, C. Yuping, L. Yadong, and S. Jianian, “Gas sensing properties of ZnO nanorods prepared by hydrothermal method”, J. Mater Sci. 40 (2005) 2919.
[24] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys. Lett. 72 (1998) 3270.
[25] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature”, Appl. Phys. Lett. 72 (1998) 3270.
[26] K. Minegishi, Y. Koiwai, Y. Kikuchi, Y. Yano, M. Kasuga, and A. Shimizu, “Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 36 (1997) L1453
[27] L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO”, J. Phys. Chem. B. 105 (2001) 3350.
[28] D. Wang, and C. Song, “Controllable synthesis of ZnO nanorod and prism arrays in a large area”, J. Phys. Chem. B. 109 (2005) 12697.
[29] Y. Huang, K. Yu, and Z. Zhu, “Synthesis and field emission of patterned ZnO nanorods”, Curr. Appl. Phys. 7 (2007) 702.
[30] Y. Zhang, K. Yu, S. Ouyang, and Z. Zhu, “Selective-area growth and field emission properties of Zinc oxide nanowire micropattern arrays”, Physica B. 382 (2006) 76
[31] Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique”, J. Phys. Chem. B. 110 (2006) 20263
[32] U. Pal and P. Santiago, “Controlling the Morphology of ZnO Nanostructures in a Low-Temperature Hydrothermal Process”, J. Phys. Chem. B. 109 (2005) 15317.
[33] S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures”, Sci. Technol. Adv. Mat. 10 (2009) 013001.
[34] F. Liu, P. J. Cao, H. R. Zhang, C. M. Shen, Z. Wang, J. Q. Li, H.J. Gao, “Well-aligned zinc oxide nanorods and nanowires prepared without catalyst”, J. Cryst. Growth 274 (2005) 126.
[35] X. Gao, X. Li, and W. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex”, J. Phys. Chem. B. 109 (2005) 1155.
[36] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions”, Chem. Mater. 17 (2005) 1001
[37] G. W. She, X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, C. S. Lee, S. T. Lee, and C. H. Liu, “Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates”, Appl. Phys. Lett. 92 (2008) 053111.
[38] H. Wang, C. Xie, and D. Zeng, “ZnO microspheres self-assembled by hexagonal nanoplates”, Chem. Lett. 34 (2005) 260.
[39] E. D. Kolb, A. S. Coriell, R. A. Laudise, A. R. Hutson, “Hydrothermal growth of low carrier concentration ZnO at high water and hydrogen pressures”, Mater. Res. Bull. 2 (1967) 1099.
[40] B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm”, J. Am. Chem. Soc. 125 (2003) 4430.
[41] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater. 13 (2001) 113.
[42] Y. S. Chang, J. M. Ting, “Growth of ZnO Thin Films and Whiskers”, Thin Solid Films 398-399 (2001) 29.
[43] Z. R. Dai, Z. W. Pan and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation”, Adv. Funct. Mater. 13 (2003) 9.
[44] Z. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, “Large-Scale Fabrication of Tower-like, Flower-like, and Tube-like ZnO Arrays by a Simple Chemical Solution Route ”, Langmuir 20 (2004) 3441.
[45] J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, and C. Yan, “Control of ZnO Morphology via a Simple Solution Route”, Chem. Mater. 14 (2002) 4712.
[46] Y. Masuda, N. Kinoshita, F.Sato, and K. Koumoto, “Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals”, Cryst. Growth Des. 6 (2006) 75.
[47] A. Kumar and George M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching”, Appl. Phys. Lett. 63 (1993) 2002.
[48] H. Shao, X. Qian, and B. Huang, “Novel growth of ZnO micro-rod arrays using hydrophobically micropatterned surfaces”, Mat. Sci. Semicon. Proc. 10 (2007) 68.
[49] R. Kitsomboonloha, S. Baruah, M. T. Z. Myint, V. Subramanian, and J. Dutta, “Selective growth of zinc oxide nanorods on inkjet printed seed patterns”, J. Cryst. Growth. 311 (2009) 2352.
[50] M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires”, Nanotechnology 16 (2005) 1364
[51] F. Paraguay D., W. Estrada L., D. R. Acosta N, E. Andrade, M. Miki-Yoshida, “Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis”, Thin Solid Films 350 (1999) 192.
[52] S. Baruah and J. Dutta, “Effect of seeded substrates on hydrothermally grown ZnO nanorods”, J. Sol-Gel Sci. Techn. 50 (2009) 456.
[53] R. B. H. Tahar, “Structural and electrical properties of aluminum-doped zinc oxide films prepared by sol–gel process”, J. Eur. Ceram. Soc. 25 (2005) 3301.
[54] R. B. H. Tahar and N. B. H. Tahar, “Crystallographic orientation in pure and aluminum-doped zinc oxide thin films prepared by sol-gel technique”, J. Am. Ceram. Soc. 88 (2005) 1725.
[55] W. P. Tai and J. H. Oh, “Humidity sensing behaviors of nanocrystalline Al-doped ZnO thin films prepared by sol-gel process”, J. Mater. Sci-Mater. EL 13 (2002) 391.
[56] S. Yi. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang, and W. F. Hsieh, “Effects of doping concentration and annealing temperature on properties of highly-oriented al-doped ZnO films”, J. Cryst. Growth 287 (2006) 78.
[57] J. P. Hoogenboom, A. K. V. Langen-Suurling, J. Romijn, and A. V. Blaaderen, “Epitaxial growth of a colloidal hard-sphere hcp crystal and the effects of epitaxial mismatchon crystal structure”, Phys. Rev. E 69 (2004) 051602.
[58] A. P. Hynninen, J. H. J. Thijssen, E. C. M. Vermolen, M. Dijkstra, and A. V. Blaaderen, “Self-assembly route for photonic crystals with a bandgap in the visible region”, Nat. Mater. 6 (2007) 202.
[59] D. L. J. Vossen, D. Fific, J. Penninkhof, T. V. Dillen, A. Polman, and A. V. Blaaderen, “Combined Optical Tweezers/Ion Beam Technique to Tune Colloidal Masks for Nanolithography”, Nano Lett. 5 (2005) 1175.
[60] W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta 202 (1997) 1
[61] R. Fürstner and W. Barthlott, “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces”, Langmuir 21 (2005) 956.
[62] C. Neinhuis and W. Barthlott, “Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces”, Ann. Bot. 79 (1997) 667
[63] A. D. Campo and E. Arzt, “Fabrication Approaches for Generating Complex Micro- and Nanopatterns on Polymeric Surfaces”, Chem. Rev. 108 (2008) 911
[64] C. Harrison, C. M. Stafford, W. Zhang, and A. Karim, “Sinusoidal phase grating created by a tunably buckled surface”, Appl. Phys. Lett. 85 (2004) 4016.
[65] C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films”, Nat. Mater. 3 (2004) 545.
[66] W. Qian, R. Xing, X. Yu, X. Quana, and Y. Han, “Highly oriented tunable wrinkling in polymer bilayer films confined with a soft mold induced by water vapor”, J. Chem. Phys. 126 (2007) 064901.
[67] J. Genzer and K. Efimenko, “Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers”, Science 290 (2000) 2130.
[68] K. Efimenko and J. Genzer, “How to Prepare Tunable Planar Molecular Chemical Gradients”, Adv. Mater. 13 (2001) 1560.
[69] K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins”, Nat. Mater. 4 (2005) 293.
[70] M. Pretzl, A. Schweikart, C. Hanske, A. Chiche, U. Zettl, A. Horn, Alexander Böker, and A. Fery, “A Lithography-Free Pathway for Chemical Microstructuring of Macromolecules from Aqueous Solution Based on Wrinkling”, Langmuir 24 (2008) 12748.
[71] G. C. Martin, T. T. Su, I. H. Loh, E. Balizer, S. T. Kowel, and P. Kornreich, “The metallization of silicone polymers in the rubbery and the glassy state”, J. Appl. Phys. 53 (1982) 797.
[72] N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer”, Nature 393 (1998) 146.
[73] W. T. S. Huck, N. Bowden, P. Onck, T. Pardoen, J. W. Hutchinson, and G. M. Whitesides, “Ordering of Spontaneously Formed Buckles on Planar Surfaces”, Langmuir 16 (2000) 3497.
[74] M. Takahashi, T. Maeda, K. Uemura, J. Yao, Y. Tokuda, T. Yoko, H. Kaji, A. Marcelli, and P. Innocenzi, “Photoinduced formation of wrinkled microstructures with long-range order in thin oxide films”, Adv. Mater. 19 (2007) 4343.
[75] C. M. Lieber, “One-Dimensional Nanostructures: Chemistry, Physics & Applications”, Solid State Commun. 107 (1998) 607.
[76] X. S. Peng, G. W. Meng, J. Zhang, X. F. Wang, Y. W. Wang, C. Z. Wang, and L. D. Zhang, “Synthesis and photoluminescence of single-crystalline In2O3 nanowires”, J. Mater. Chem 12 (2002) 1602.
[77] E. Favre, “Swelling of crosslinked polydimethylsiloxane networks by pure solvents: influence of temperature”, Eur. Polym. J. 32 (1996) 1183.
[78] M. Braden, D. Latham, and M. P. Patel, “Observations on the swelling of cross-linked poly(dimethylsiloxane) networks by solvents”, Eur. Polym. J. 41 ( 2005) 3069.
[79] Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo, Y. R. Li, “Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method”, Mater. Res. Bull. 41 (2006) 354.
[80] H. Z. Zhang, X. C. Sun, R. M. Wang, D. P. Yu, “Growth and formation mechanism of c-oriented ZnO nanorod arrays deposited on glass”, J. Cryst. Growth 269 (2004) 464.
[81] J. Lee, M. J. Kim, and H. H. Lee, “Surface Modification of Poly(dimethylsiloxane) for Retarding Swelling in Organic Solvents”, Langmuir 22 (2006) 2090.
[82] P. J. Yoo and H. H. Lee, “Complex Pattern Formation by Adhesion-Controlled Anisotropic Wrinkling”, Langmuir 24 (2008) 6897.
[83] B. Bhushan, Springer handbook of nanotechnology, p.p.1793.
[84] Y. Kokubun, H. Kimura and S. Nakagomi, “Preparation of ZnO Thin Films on Sapphire Substrates by Sol-Gel Method”, Jpn. J. Appl. Phys. 42 (2003) L904.
[85] C. Lu, H. Möhwald and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling”, Soft Matter 3 (2007) 1530.
[86] P. Yang, G. Wirnsberger, H. C. Huang, S. R. Cordero, M. D. McGehee, B. Scott, T. Deng, G. M. Whitesides, B. F. Chmelka, S. K. Buratto, and G. D. Stucky, “Mirrorless Lasing from Mesostructured Waveguides Patterned by Soft Lithography”, Science 287 (2000) 465.
[87] D. Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates”, Science 311 (2006) 208.
[88] A. I. Teixeira, G. A. Abrams, P.J. Bertics, C. J. Murphy, and P. F. Nealey, “Epithelial contact guidance on well-defined micro- and nanostructured substrates”, J. Cell Sci. 116 (2003) 1881.
[89] M. Takahashi, K. Uemura, T. Maeda, J. Yao, Y. Tokuda, T. Yoko, S. Costacurta, L. Malfatti, and P. Innocenzi, “Bottom-up and top-down approach for periodic microstructures on thin oxide films by controlled photo-activated chemical processes”, J. Sol–Gel. Sci. Technol. 48 (2008) 182.
[90] S. J. Kwon, J. H. Park, and J. G. Park, “Wrinkling of a sol-gel-derived thin film”, Phys. Rev. E 71 (2005) 011604.
[91] S. S. Sengupta, S. M. Park, D. A. Payne, and L. H. Allen, “Origins and evolution of stress development in sol-gel derived thin layers and multideposited coatings of lead titanate”, J. Appl. Phys. 83 (1998) 2291.
[92] J. Shi, A. P. Fang, L. Malaquin, A. Pépin, D. Decanini, J. L. Viovy, and Y. Chen, “Highly parallel mix-and-match fabrication of nanopillar arrays integrated in microfluidic channels for long DNA molecule separation”, Appl. Phys. Lett. 91 (2007) 153114.
[93] W. Hellmich, J. Regtmeier, T. T. Duong, R. Ros, D. Anselmetti, and A. Ros, “Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels”, Langmuir 21 (2005) 7551.
[94] H. Y. Chen and J. Lahann, “Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings”, Anal. Chem. 77 (2005) 6909.
[95] M. S. Agren, “Zinc in wound repair”, Arch. Dermatol. 135 (1999) 1273
[96] P. P. Papageorgiou and A. C. Chu, “Chloroxylenol and zinc oxide containing cream (Nels cream®) vs. 5% benzoyl peroxide cream in the treatment of acne vulgaris. A double-blind, randomized, controlled trial”, Clin. Exp. Dermatol. 25 (2000) 16