簡易檢索 / 詳目顯示

研究生: 馮彥翔
Feng, Yan-Xiang
論文名稱: 雙金屬有機骨架/氧化石墨烯衍生之氧化鈷/摻氮還原氧化石墨烯奈米複合物之製備及其作為鋅空氣電池之雙功能電觸媒的應用
Preparation of bimetal-organic frameworks/graphene oxide derived cobalt oxides/N-doped reduced graphene oxide nanocomposites as bifunctional electrocatalysts for Zn-air battery
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 125
中文關鍵詞: 太陽熱增強雙功能電觸媒全固態鋅空氣電池
外文關鍵詞: solar thermal-enhanced, bi-functional electrocatalyst, all-solid-state zinc-air battery
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可充式鋅空氣電池是一種很有前途的儲能設備,但受到氧氣還原反應(ORR)和氧氣生成反應(OER)雙功能電觸媒性能不佳的限制。此外,儲能設備在低溫的環境下會降低性能,甚至失效。因此,本研究利用氧化石墨烯(GO)、硝酸鈷六水合物、硝酸鋅六水合物和有機配位體1,3,5-苯基三羧酸藉由溶熱法進行反應產生Co/Zn MOFs@GO,接著混摻三聚氰胺形成Co/Zn MOFs@melamine@GO,最後進行階層式的鍛燒,製得雙功能電觸媒Co3O4/CoO/NrGO,以發展具太陽熱增強性能之全固態鋅空氣電池。最適Co3O4/CoO/NrGO之ORR及OER起始電位分別為0.85 V及1.55 V (V vs. RHE),此外,其雙功能電觸媒活性指標(△E)為0.84 V,與商用觸媒(Pt/C+RuO2)相當,並且具有勝過Pt/C+RuO2的穩定性。進一步將Co3O4/ CoO/NrGO組成全固態鋅空氣電池,顯示其具良好的充放電特性、高功率密度(43.28 mW cm-2)和高能量密度(701 Wh kg-1)。在室溫下照射太陽光,可大幅提高Co3O4/CoO/NrGO全固態鋅空氣電池的功率密度(80.39 mW cm-2)。在模擬高緯度的4℃環境下照射太陽光,Co3O4/CoO/NrGO全固態鋅空氣電池可展現與其在室溫未照光的情況下相近的功率密度(48.99 mW cm-2),並且具有良好的穩定性。在實際應用時,本研究所發展之Co3O4 /CoO/NrGO全固態鋅空氣電池,在不論有無照光之室溫與低溫環境下皆能使LED燈發亮。

    The rechargeable zinc-air battery is a promising energy storage device, but it is limited by the inferior performance of oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) bi-functional catalysts. In addition, it can exhibit diminishing performance in low-temperature environment and even may fail. Therefore, in this study, a bi-functional electrocatalyst Co3O4/CoO/ NrGO was synthesized for the development of all-solid-state zinc-air battery with solar thermal-enhanced performance by the solvothermal reaction of graphene oxide (GO), cobalt nitrate hexahydrate, zinc nitrate hexahydrate and organic ligands 1,3,5-benzenetricarboxylic acid to form Co/Zn MOFs@GO, the followed mixing with melamine to form Co/Zn MOFs@melamine@GO, and the final hierarchical calcination. The onset-potentials of optimal Co3O4/ CoO/NrGO for ORR and OER were 0.85 V and 1.55 V (V vs. RHE), respectively. Moreover, its bi-functional electrocatalyst activity index(△E) was 0.84 V, which was comparable to that of commercial catalysts (Pt/C+RuO2). Also, it exhibited better stability than Pt/C+RuO2. Furthermore, Co3O4/CoO/ NrGO was used to fabricate the all-solid-state zinc-air battery which exhibited good and stable rechargeability, high power density (43.28 mW cm-2) and high energy density (701 Wh kg-1). Under solar illumination at room temperature, the power density (80.39 mW cm-2) of the Co3O4/CoO/NrGO all-solid-state zinc-air battery has been greatly improved. Under solar illumination in a simulated high altitude environment at 4℃, the power density (48.99 mW cm-2) of Co3O4/CoO/NrGO all-solid-state zinc-air battery could be comparable to that of Co3O4/CoO/NrGO all-solid-state zinc-air battery at room temperature, and it showed good stability. In practical applications, the developed Co3O4/ CoO/NrGO all-solid-state zinc-air battery all could power the LED light under the conditions with and without solar illumination at room temperature and in low-temperature environment.

    中文摘要 I Abstract III 誌謝 IX 總目錄 X 圖目錄 XIII 表目錄 XIX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 材料簡介 4 1.2.1 石墨烯 4 1.2.2 金屬有機骨架 12 1.3 鋅空氣電池 16 1.3.1 氧氣還原反應 18 1.3.2 氧氣析出反應 24 1.3.3 鋅空氣電池常見雙功能電觸媒 27 第二章 基礎理論 32 2.1 循環伏安法 33 2.2 線性掃描法 36 2.2.1 塔佛斜率 39 2.2.2 電子轉移數 41 2.2.3 電池極化現象 42 2.3 定電壓法 47 2.4 定電流充放電法 49 第三章 實驗部分 51 3.1 藥品與儀器 51 3.1.1 藥品 51 3.1.2 儀器 54 3.2 實驗步驟 57 3.2.1 GO之製備 57 3.2.2 Co/Zn MOFs@melamine@GO和Co/Zn MOFs@GO之製備58 3.2.3 Co/Zn MOFs@melamine@GO在不同條件下之熱處理 60 3.2.4 旋轉電極觸媒漿料之製備 63 3.2.5 膠態電解質之製備及全固態鋅空氣電池之組裝 63 3.2.6 觸媒物理性質分析 65 3.2.7 觸媒電化學性質分析 67 3.2.8 鋅空氣電池電化學性質分析 70 第四章 結果與討論 72 4.1 觸媒基本物性 72 4.2 觸媒之氧氣還原及氧氣產生性能 86 4.2.1 觸媒之氧氣還原性能 86 4.2.2 觸媒之氧氣產生性能 92 4.2.3 觸媒之氧氣還原及氧氣產生雙功能性能 97 4.3 全固態鋅空氣電池性能 101 4.4 全固態鋅空氣電池在照光下性能 105 4.5 全固態鋅空氣電池在模擬低溫環境及照光下之性能 107 第五章 結論 109 參考文獻 111

    [1] Pei, P., Wang, K. & Ma, Z.; Technologies for extending zinc–air battery’s cyclelife: a review, Applied Energy, 128, 315-324, 2014.
    [2] Chen, C., Cheng, D., Liu, S., Wang, Z., Hu, M. & Zhou, K.; Engineering the multiscale structure of bifunctional oxygen electrocatalyst for highly efficient and ultrastable zinc-air battery, Energy Storage Materials, 24, 402-411, 2020.
    [3] Guan, Z., Zhang, X., Fang, J., Wang, X., Zhu, W. & Zhuang, Z.; Fe, Ni, S, N-doped carbon materials as highly active bi-functional catalysts for rechargeable zinc-air battery, Materials Letters, 258, 126826, 2020.
    [4] Xiang, Q., Yu, J. & Jaroniec, M.; Graphene-based semiconductor photocatalysts. Chemical Society Reviews, 41(2), 782-796, 2012.
    [5] Pumera, M.; Graphene-based nanomaterials and their electrochemistry. Chemical Society Reviews, 39(11), 4146-4157, 2010.
    [6] Hou, J., Shao, Y., Ellis, M. W., Moore, R. B. & Yi, B.; Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, 13(34), 15384-15402, 2011.
    [7] Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C., Gong, H., Shen, Z., Lin, J. & Ruoff, R. S.; Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5(7), 7936-7942, 2012.
    [8] Liu, J., Takeshi, D., Orejon, D., Sasaki, K. & Lyth, S. M.; Defective nitrogen-doped graphene foam: a metal-free, non-precious electrocatalyst for the oxygen reduction reaction in acid, Journal of the Electrochemical Society, 161(4), F544, 2014.
    [9] Muthurasu, A., Chae, S. H., Kim, T., Mukhiya, T. & Kim, H. Y.; Template-assisted fabrication of ZnO/Co3O4 one-dimensional metal–organic framework array decorated with amorphous iron oxide/hydroxide nanoparticles as an efficient electrocatalyst for the oxygen evolution reaction, Energy & Fuels, 34(6), 7716-7725, 2020.
    [10] Yu, Z., Bai, Y., Zhang, N., Yang, W., Ma, J., Wang, Z., Sun, W., Qiao, J. & Sun, K.; Metal-organic framework-derived heterostructured ZnCo2O4@ FeOOH hollow polyhedrons for oxygen evolution reaction, Journal of Alloys and Compounds, 832, 155067, 2020.
    [11] Zou, L. & Xu, Q.; Synthesis of a hierarchically porous C/Co3O4 nanostructure with boron doping for oxygen evolution reaction, Chemistry–An Asian Journal, 15(4), 490-493, 2020.
    [12] Tahir, M., Pan, L., Idrees, F., Zhang, X., Wang, L., Zou, J. J. & Wang, Z. L.; Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy, 37, 136-157, 2017.
    [13] Liu, M., Liu, J., Li, Z. & Wang, F.; Atomic-level Co3O4 layer stabilized by metallic cobalt nanoparticles: a highly active and stable electrocatalyst for oxygen reduction, ACS Applied Materials & Interfaces, 10(8), 7052-7060, 2018.
    [14] Hirai, S., Morita, K., Yasuoka, K., Shibuya, T., Tojo, Y., Kamihara, Y., Miura, A., Suzuki, H., Ohno, T., Matsuda, T. & Yagi, S.; Oxygen vacancy-originated highly active electrocatalysts for the oxygen evolution reaction, Journal of Materials Chemistry A, 6(31), 15102-15109, 2018.
    [15] Yi, F., Ren, H., Dai, K., Wang, X., Han, Y., Wang, K., Li, K., Guan, B., Wang, J., Tang, M., Shan, J., Yang, H., Zheng, M., You, Z., Wei, D. & Liu, Z.; Solar thermal-driven capacitance enhancement of supercapacitors, Energy & Environmental Science, 11(8), 2016-2024, 2018.
    [16] Lim, D. K., Barhoumi, A., Wylie, R. G., Reznor, G., Langer, R. S. & Kohane, D. S.; Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano letters, 13(9), 4075-4079, 2013.
    [17] Jiang, Q., Tian, L., Liu, K. K., Tadepalli, S., Raliya, R., Biswas, P., Naik, R. R. & Singamaneni, S.; Bilayered biofoam for highly efficient solar steam generation. Advanced Materials, 28(42), 9400-9407, 2016.
    [18] Li, G. Y., Wu, X. H., He, W. N., Fang, J. H. & Zhang, X. T.; Controlled assembly of graphene-based aerogels. Acta Physico-Chimica Sinica, 32(9), 2146-2158, 2016.
    [19] Liang, J. X., Xiao, Z. C. & Zhi, L. J.; Graphenal polymers: 3D carbon-rich polymers as energy materials with electronic and ionic transport pathways. Acta Physico-Chimica Sinica, 32(10), 2390-2398, 2016.
    [20] Xia, K. L., Jian, M. Q. & Zhang, Y. Y.; Advances in wearable and flexible conductors based on nanocarbon materials. Acta Physico-Chimica Sinica, 32(10), 2427-2446, 2016.
    [21] Ito, Y., Tanabe, Y., Han, J., Fujita, T., Tanigaki, K. & Chen, M.; Multifunctional porous graphene for high‐efficiency steam generation by heat localization. Advanced Materials, 27(29), 4302-4307, 2015.
    [22] Hu, X., Xu, W., Zhou, L., Tan, Y., Wang, Y., Zhu, S. & Zhu, J.; Tailoring graphene oxide‐based aerogels for efficient solar steam generation under one sun. Advanced materials, 29(5), 1604031, 2017.
    [23] Ren, H., Tang, M., Guan, B., Wang, K., Yang, J., Wang, F., Wang, M., Shan, J., Chen, Z., Wei, D., Liu, Z. & Peng, H.; Hierarchical graphene foam for efficient omnidirectional solar–thermal energy conversion. Advanced Materials, 29(38), 1702590, 2017.
    [24] Yazdi, G. R., Iakimov, T. & Yakimova, R.; Epitaxial graphene on SiC: a review of growth and characterization, Crystals, 6(5), 53, 2016.
    [25] Choi, W., Lahiri, I., Seelaboyina, R. & Kang, Y. S.; Synthesis of graphene and its applications: a review, Critical Reviews in Solid State and Materials Sciences, 35(1), 52-71, 2010.
    [26] Yadav, R. & Dixit, C. K.; Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review, Journal of Science: Advanced Materials and Devices, 2(2), 141-149, 2017.
    [27] Yi, M. & Shen, Z.; A review on mechanical exfoliation for the scalable production of graphene, Journal of Materials Chemistry A, 3(22), 11700-11715, 2015.
    [28] Chua, C. K. & Pumera, M.; Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chemical Society Reviews, 43(1), 291-312, 2014.
    [29] Muñoz, R. & Gómez‐Aleixandre, C.; Review of CVD synthesis of graphene, Chemical Vapor Deposition, 19(10-11-12), 297-322, 2013.
    [30] Mishra, N., Boeckl, J., Motta, N. & Iacopi, F.; Graphene growth on silicon carbide: a review, Physica Status Solidi (a), 213(9), 2277-2289, 2016.
    [31] Wang, H., Maiyalagan, T. & Wang, X.; Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications, ACS Catalysis, 2(5), 781-794, 2012.
    [32] Sheng, Z. H., Shao, L., Chen, J. J., Bao, W. J., Wang, F. B. & Xia, X. H.; Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis, ACS Nano, 5(6), 4350-4358, 2011.
    [33] Rybin, M., Pereyaslavtsev, A., Vasilieva, T., Myasnikov, V., Sokolov, I., Pavlova, A., Obraztsova, E., Khomich, A., Ralchenko, V. & Obraztsova, E.; Efficient nitrogen doping of graphene by plasma treatment, Carbon, 96, 196-202, 2016.
    [34] Park, S., Hu, Y., Hwang, J. O., Lee, E. S., Casabianca, L. B., Cai, W., Potts, J. R., Ha, H. W., Chen, S., Oh, J., Kim, S. O., Kim, Y. H., Ishii, Y. & Ruoff, R. S.; Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping, Nature Communications, 3(1), 1-8, 2012.
    [35] Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A. & Verpoort, F.; Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations, Chemical Society Reviews, 44(19), 6804-6849, 2015.
    [36] Zhu, Q. L. & Xu, Q.; Metal–organic framework composites, Chemical Society Reviews, 43(16), 5468-5512, 2014.
    [37] Li, B., Wen, H. M., Cui, Y., Zhou, W., Qian, G. & Chen, B.; Emerging multifunctional metal–organic framework materials, Advanced Materials, 28(40), 8819-8860, 2016.
    [38] Li, X., Sun, Q., Liu, J., Xiao, B., Li, R. & Sun, X.; Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries, Journal of Power Sources, 302, 174-179, 2016.
    [39] Wang, P., Lang, J., Liu, D. & Yan, X.; TiO2 embedded in carbon submicron-tablets: synthesis from a metal–organic framework precursor and application as a superior anode in lithium-ion batteries, Chemical Communications, 51(57), 11370-11373, 2015.
    [40] Li, Y. & Dai, H.; Recent advances in zinc–air batteries, Chemical Society Reviews, 43(15), 5257-5275, 2014.
    [41] Fu, J., Cano, Z. P., Park, M. G., Yu, A., Fowler, M. & Chen, Z.; Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives, Advanced Materials, 29(7), 1604685, 2017.
    [42] Gu, P., Zheng, M., Zhao, Q., Xiao, X., Xue, H. & Pang, H.; Rechargeable zinc–air batteries: a promising way to green energy, Journal of Materials Chemistry A, 5(17), 7651-7666, 2017.
    [43] Ge, X., Sumboja, A., Wuu, D., An, T., Li, B., Goh, F. T., Hor, T. A., Zong, Y. & Liu, Z.; Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts, ACS Catalysis, 5(8), 4643-4667, 2015.
    [44] Morozan, A., Jousselme, B. & Palacin, S.; Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes, Energy & Environmental Science, 4(4), 1238-1254, 2011.
    [45] Katsounaros, I., Schneider, W. B., Meier, J. C., Benedikt, U., Biedermann, P. U., Auer, A. A. & Mayrhofer, K. J.; Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism, Physical Chemistry Chemical Physics, 14(20), 7384-7391, 2012.
    [46] Wang, C., Markovic, N. M. & Stamenkovic, V. R.; Advanced platinum alloy electrocatalysts for the oxygen reduction reaction, ACS Catalysis, 2(5), 891-898, 2012.
    [47] Li, M., Lei, Y., Sheng, N. & Ohtsuka, T.; Preparation of low-platinum-content platinum–nickel, platinum–cobalt binary alloy and platinum–nickel–cobalt ternary alloy catalysts for oxygen reduction reaction in polymer electrolyte fuel cells, Journal of Power Sources, 294, 420-429, 2015.
    [48] Hirschenhofer, J. H., Stauffer, D. B., Engleman, R. R. & Klett, M. G.; Fuel cell handbook, Parsons Corporation, 25-42, 1998.
    [49] Cheng, F. & Chen, J.; Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts, Chemical Society Reviews, 41(6), 2172-2192, 2012.
    [50] Wu, Z. S., Yang, S., Sun, Y., Parvez, K., Feng, X. & Müllen, K.; 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134(22), 9082-9085, 2012.
    [51] Antolini, E.; Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells, ACS Catalysis, 4(5), 1426-1440, 2014.
    [52] Lin, Y., Tian, Z., Zhang, L., Ma, J., Jiang, Z., Deibert, B. J., Ge, R. & Chen, L.; Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media, Nature Communications, 10(1), 1-13, 2019.
    [53] Mefford, J. T., Rong, X., Abakumov, A. M., Hardin, W. G., Dai, S., Kolpak, A. M., Johnston, K. P. & Stevenson, K. J.; Water electrolysis on La1− xSrxCo O3− δ perovskite electrocatalysts, Nature Communications, 7(1), 1-11, 2016.
    [54] Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y.; A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles, Science, 334(6061), 1383-1385, 2011.
    [55] Lyons, M. E., Doyle, R. L., Fernandez, D., Godwin, I. J., Browne, M. P. & Rovetta, A.; The mechanism and kinetics of electrochemical water oxidation at oxidized metal and metal oxide electrodes. Part 2. The surfaquo group mechanism: a mini review, Electrochemistry Communications, 45, 56-59, 2014.
    [56] Yuanyuan, J., Kai, D., Yizhong, L., Jiawei, L., Bo, C., Zhongqian, S. & Li, N.; Bimetallic oxide coupled to B-doped graphene as highly efficient electrocatalyst for oxygen evolution reaction, SCIENCE CHINA Materials, 63(7), 1247-1256, 2020.
    [57] Shi, Q., Liu, Q., Ma, Y., Fang, Z., Liang, Z., Shao, G., Tang, B., Yang, W., Qin, L. & Fang, X.; High‐performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanoparticles for zinc–air battery and self‐powered overall water splitting, Advanced Energy Materials, 10(10), 1903854, 2020.
    [58] Miao, H., Chen, B., Li, S., Wu, X., Wang, Q., Zhang, C., Sun, Z. & Li, H.; All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte, Journal of Power Sources, 450, 227653, 2020.
    [59] Peng, W., Wang, Y., Yang, X., Mao, L., Jin, J., Yang, S., Fu, K. & Li, G.; Co9S8 nanoparticles embedded in multiple doped and electrospun hollow carbon nanofibers as bifunctional oxygen electrocatalysts for rechargeable zinc-air battery, Applied Catalysis B: Environmental, 268, 118437, 2020.
    [60] Raccichini, R., Amores, M. & Hinds, G.; Critical review of the use of reference electrodes in Li-ion batteries: a diagnostic perspective, Batteries, 5(1), 12, 2019.
    [61] Van Benschoten, J. J., Lewis, J. Y., Heineman, W. R., Roston, D. A. & Kissinger, P. T.; Cyclic voltammetry experiment, Journal of Chemical Education, 60(9), 772, 1983.
    [62] Evans, D. H., O'Connell, K. M., Petersen, R. A. & Kelly, M. J.; Cyclic voltammetry, Journal of Chemical Education, 60(4), 290, 1983.
    [63] Kissinger, P. T. & Heineman, W. R.; Cyclic voltammetry, Journal of Chemical Education, 60(9), 702, 1983.
    [64] Zou, H., Li, G., Duan, L., Kou, Z. & Wang, J.; In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting, Applied Catalysis B: Environmental, 259, 118100, 2019.
    [65] Xia, W., Mahmood, A., Liang, Z., Zou, R. & Guo, S.; Earth‐abundant nanomaterials for oxygen reduction, Angewandte Chemie International Edition, 55(8), 2650-2676, 2016.
    [66] Khilari, S. & Pradhan, D.; Role of Cathode Catalyst in Microbial Fuel Cell, Springer, Cham, 141-163, 2018.
    [67] Zhou, X., Qiao, J., Yang, L. & Zhang, J.; A review of graphene‐based nanostructural materials for both catalyst supports and metal‐free catalysts in PEM fuel cell oxygen reduction reactions, Advanced Energy Materials, 4(8), 1301523, 2014.
    [68] Huang, Z. F., Wang, J., Peng, Y., Jung, C. Y., Fisher, A. & Wang, X.; Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives, Advanced Energy Materials, 7(23), 1700544, 2017.
    [69] Li, Y., Zhong, C., Liu, J., Zeng, X., Qu, S., Han, X., Deng, Y., Hu, W. & Lu, J.; Atomically thin mesoporous Co3O4 layers strongly coupled with N‐rGO nanosheets as high‐performance bifunctional catalysts for 1D knittable zinc–air batteries, Advanced Materials, 30(4), 1703657, 2018.
    [70] Tafel, J.; Über die Polarisation bei kathodischer Wasserstoffentwicklung, Zeitschrift für Physikalische Chemie, 50(1), 641-712, 1905.
    [71] Qiao, J., Liu, Y. & Zhang, J.; Electrode kinetics of CO electroreduction from:electrochemical reduction of carbon dioxide, fundamentals and technologies, CRC Press, 115, 2016.
    [72] Gao, J., Wang, J., Zhou, L., Cai, X., Zhan, D., Hou, M. & Lai, L.; Co2P@ N, P-codoped carbon nanofiber as a free-standing air electrode for Zn–air batteries: synergy effects of CoNx satellite shells, ACS Applied Materials & Interfaces, 11(10), 10364-10372, 2019.
    [73] Zhou, R., Zheng, Y., Jaroniec, M. & Qiao, S. Z.; Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment, ACS Catalysis, 6(7), 4720-4728, 2016.
    [74] Ju, J., Wang, X. & Chen, W.; Design and facile one-pot synthesis of uniform PdAg cubic nanocages as efficient electrocatalyst for the oxygen reduction reaction, International Journal of Hydrogen Energy, 45(11), 6437-6446, 2020.
    [75] Rho, Y. W., Srinivasan, S. & Kho, Y. T.; Mass transport phenomena in proton exchange membrane fuel cells using O2/He, O2/Ar, and O2/N2 mixtures: II. Theoretical analysis, Journal of the Electrochemical Society, 141(8), 2089, 1994.
    [76] Mann, R. F., Amphlett, J. C., Peppley, B. A. & Thurgood, C. P.; Application of Butler–Volmer equations in the modelling of activation polarization for PEM fuel cells, Journal of Power Sources, 161(2), 775-781, 2006.
    [77] Chan, S. H., Khor, K. A. & Xia, Z. T.; A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, Journal of Power Sources, 93(1-2), 130-140, 2001.
    [78] Wang, W., Wei, X., Choi, D., Lu, X., Yang, G. & Sun, C.; Electrochemical cells for medium-and large-scale energy storage: fundamentals, In Advances in Batteries for Medium and Large-Scale Energy Storage, 3-28, 2015.
    [79] Wang, C. C., Hung, K. Y., Ko, T. E., Hosseini, S. & Li, Y. Y.; Carbon-nanotube-grafted and nano-Co3O4-doped porous carbon derived from metal-organic framework as an excellent bifunctional catalyst for zinc–air battery, Journal of Power Sources, 452, 227841, 2020.
    [80] Shoup, D. & Szabo, A.; Chronoamperometric current at finite disk electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 140(2), 237-245, 1982.
    [81] Yuan, B., Nam, G., Li, P., Wang, S., Jang, H., Wei, T., Qin, Q., Liu, X. & Cho, J.; Cu97P3-x-yOxNy/NPC as a bifunctional electrocatalyst for rechargeable zinc-air battery, Journal of Power Sources, 421, 109-115, 2019.
    [82] Herman, H. B. & Bard, A. J.; Cyclic chronopotentiometry. Diffusion controlled electrode reaction of a single component system, Analytical Chemistry, 35(9), 1121-1125, 1963.
    [83] Jia, N., Liu, J., Gao, Y., Chen, P., Chen, X., An, Z., Li, X. & Chen, Y.; Graphene‐encapsulated Co9S8 nanoparticles on N, S‐codoped carbon nanotubes: an efficient bifunctional oxygen electrocatalyst, ChemSusChem, 12(14), 3390-3400, 2019.
    [84] Rani, D., Kumar, R., Kumar, V. & Singh, M.; High yield cycloaddition of carbon dioxide to epoxides catalyzed by metal–organic frameworks, Materials Today Sustainability, 5, 100021, 2019.
    [85] Huang, Z. H., Liu, G. & Kang, F.; Glucose-promoted Zn-based metal–organic framework/graphene oxide composites for hydrogen sulfide removal, ACS Applied Materials & Interfaces, 4(9), 4942-4947, 2012.
    [86] Liu, Q., Chang, Z., Li, Z. & Zhang, X.; Flexible metal–air batteries: progress, challenges, and perspectives, Small Methods, 2(2), 1700231, 2018.
    [87] Liu, Y., Jiang, H., Hao, J., Liu, Y., Shen, H., Li, W. & Li, J.; Metal–organic framework-derived reduced graphene oxide-supported ZnO/ZnCo2O4/C hollow nanocages as cathode catalysts for aluminum–O2 batteries, ACS Applied Materials & Interfaces, 9(37), 31841-31852, 2017.
    [88] Liu, W. & Yin, X. B.; Metal–organic frameworks for electrochemical applications, TrAC Trends in Analytical Chemistry, 75, 86-96, 2016.
    [89] Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L.; Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, Science, 323(5915), 760-764, 2009.
    [90] Chen, B., He, X., Yin, F., Wang, H., Liu, D. J., Shi, R., Chen, J. & Yin, H.; MO‐Co@ N‐doped carbon (M= Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–air battery, Advanced Functional Materials, 27(37), 1700795, 2017.
    [91] Amiinu, I. S., Liu, X., Pu, Z., Li, W., Li, Q., Zhang, J., Tang, H., Zhang, H. & Mu, S.; From 3D ZIF nanocrystals to Co–Nx/C nanorod array electrocatalysts for ORR, OER, and Zn–air batteries, Advanced Functional Materials, 28(5), 1704638, 2018.
    [92] Chen, Y. N., Guo, Y., Cui, H., Xie, Z., Zhang, X., Wei, J. & Zhou, Z.; Bifunctional electrocatalysts of MOF-derived Co–N/C on bamboo-like MnO nanowires for high-performance liquid-and solid-state Zn–air batteries, Journal of Materials Chemistry A, 6(20), 9716-9722, 2018.
    [93] Wang, Z., Wang, W., Zhang, L. & Jiang, D.; Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature, Catalysis Science & Technology, 6(11), 3845-3853, 2016.
    [94] Su, C. Y., Cheng, H., Li, W., Liu, Z. Q., Li, N., Hou, Z., Bai, F. Q., Zhang, H. X. & Ma, T. Y.; Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all‐solid‐state zinc–air battery, Advanced Energy Materials, 7(13), 1602420, 2017.
    [95] Shen, B., Guo, R., Lang, J., Liu, L., Liu, L. & Yan, X.; A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte, Journal of Materials Chemistry A, 4(21), 8316-8327, 2016.
    [96] Wang, Q., Hu, W. & Huang, Y.; Nitrogen doped graphene anchored cobalt oxides efficiently bi-functionally catalyze both oxygen reduction reaction and oxygen revolution reaction, International Journal of Hydrogen Energy, 42(9), 5899-5907, 2017.
    [97] Lu, H. S., Zhang, H., Liu, R., Zhang, X., Zhao, H. & Wang, G.; Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts, Applied Surface Science, 392, 402-409, 2017.
    [98] Wang, J., Wu, H., Gao, D., Miao, S., Wang, G. & Bao, X.; High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery, Nano Energy, 13, 387-396, 2015.
    [99] Liang, Y., Gong, Q., Sun, X., Xu, N., Gong, P. & Qiao, J.; Rational fabrication of thin-layered NiCo2S4 loaded graphene as bifunctional non-oxide catalyst for rechargeable zinc-air batteries, Electrochimica Acta, 342, 136108, 2020.
    [100] Prabu, M., Ramakrishnan, P. & Shanmugam, S.; CoMn2O4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc–air battery, Electrochemistry Communications, 41, 59-63, 2014.
    [101] Chen, B., Ma, G., Zhu, Y. & Xia, Y.; Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions, Scientific Reports, 7(1), 1-9, 2017.
    [102] Li, G., Wang, X., Fu, J., Li, J., Park, M. G., Zhang, Y., Lui, G. & Chen, Z.; Pomegranate‐inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal–air batteries, Angewandte Chemie International Edition, 55(16), 4977-4982, 2016.
    [103] Yu, M., Wang, Z., Hou, C., Wang, Z., Liang, C., Zhao, C., Tong, Y., Lu, X. & Yang, S.; Nitrogen‐doped Co3O4 mesoporous nanowire arrays as an additive‐free air‐cathode for flexible solid‐state zinc–air batteries, Advanced Materials, 29(15), 1602868, 2017.
    [104] Guan, C., Sumboja, A., Wu, H., Ren, W., Liu, X., Zhang, H., Liu, Z., Cheng, C., Pennycook, S. J. & Wang, J.; Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid‐state zinc–air batteries, Advanced Materials, 29(44), 1704117, 2017.
    [105] Zang, W., Sumboja, A., Ma, Y., Zhang, H., Wu, Y., Wu, S., Wu, H., Liu, Z., Guan, C., Wang, J. & Pennycook, S. J.; Single Co atoms anchored in porous N-doped carbon for efficient zinc− air battery cathodes, ACS Catalysis, 8(10), 8961-8969, 2018.
    [106] Ji, D., Fan, L., Li, L., Mao, N., Qin, X., Peng, S. & Ramakrishna, S.; Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries, Carbon, 142, 379-387, 2019.
    [107] Li, X., Dong, F., Xu, N., Zhang, T., Li, K. & Qiao, J.; Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc–air batteries, ACS Applied Materials & Interfaces, 10(18), 15591-15601, 2018.
    [108] Guo, Z., Wang, F., Xia, Y., Li, J., Tamirat, A. G., Liu, Y., Wang, L., Wang, Y. & Xia, Y.; In situ encapsulation of core–shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries, Journal of Materials Chemistry A, 6(4), 1443-1453, 2018.
    [109] Qu, S., Song, Z., Liu, J., Li, Y., Kou, Y., Ma, C., Han, X., Deng, Y., Zhao, N., Hu, W. & Zhong, C.; Electrochemical approach to prepare integrated air electrodes for highly stretchable zinc-air battery array with tunable output voltage and current for wearable electronics, Nano Energy, 39, 101-110, 2017.

    下載圖示 校內:2025-08-20公開
    校外:2025-08-20公開
    QR CODE