| 研究生: |
蕭博群 Hsiao, Po-Chun |
|---|---|
| 論文名稱: |
高效能管線式類比數位轉換器及三角積分調變器之設計 Design of Power-Efficient Pipelined Analog-to-Digital Converter and Sigma-Delta Modulator |
| 指導教授: |
劉濱達
Liu, Bin-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 以比較器為基礎之切換電容式電路 、管線式類比數位轉換器 、以充電幫浦為基礎之切換電容式電路 、三角積分調變器 |
| 外文關鍵詞: | comparator-based switched-capacitor circuit, pipelined ADC, charge-pump based switched-capacitor circuit, sigma-delta modulator |
| 相關次數: | 點閱:126 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出兩種類比數位轉換器架構:一個是以比較器為基礎之管線式類比數位轉換器,另一個為以充電幫浦為基礎的三角積分調變器。
在以比較器為基礎之管線式類比數位轉換器的架構中,解決了過充電壓的問題,並提高取樣速度。其方法是將兩段式充放電改為一段式,以提高取樣速度,再搭配相關二重取樣和消除過充電壓的技巧來提高解析度。此架構使用台灣積體電路公司90 nm一層多晶矽九層金屬線製程,實現一個供應電壓1.2 V,解析度9位元,取樣頻率50 MHz的管線式類比數位轉換器。由模擬結果得知,輸入訊號頻率為1 MHz時,有效位元數為8.73位元,訊噪比為54.31 dB,FoM可達到172 fJ/轉換。
在以充電幫浦為基礎的三角積分調變器的架構中,解決了傳統以充電幫浦為基礎的切換電容式電路需要兩倍參考電壓值的問題,並且將量化器和資料加權平均演算法的動作時間延長到半個時脈周期;另外還使用低失真的架構來降低積分器的輸出擺輻。因此,使用單級運算放大器就可以達到規格要求,大幅降低功率消耗。此架構使用台灣積體電路公司90 nm一層多晶矽九層金屬線製程,實現一個供應電壓1.2 V,取樣頻率80 MHz,訊號頻寬2.5 MHz的二階,四位元量化器之三角積分調變器。由模擬結果得知,在16倍超取樣率下,有效位元數為10.894位元,訊噪比為50.52 dB,FoM可達到156.6 fJ/轉換。
In this thesis, two analog-to-digital converters are proposed: one is the comparator-based switched-capacitor (CBSC) pipelined ADC, and the other is the charge-pump based sigma-delta modulator.
In the proposed comparator-based switched-capacitor analog-to-digital structure, it only needs one charge transfer phase, and it also applies the correlated double sampling (CDS) technique and overshoot correction technique. Therefore, both the speed and the accuracy are increased. This 1.2-V, 9-bit, 50-MHz sampling frequency pipelined ADC is designed in TSMC 90-nm 1P9M CMOS process. The simulation results show that when input signal frequency is 1 MHz, the ENOB is 8.73 bits, SNDR is 54.31 dB and FoM is 172 fJ/conversion.
In the proposed charge-pump based sigma-delta-modulator, it does not need the 2VREF, and it can extend the time for quantization and DEM to half clock cycle; besides, it also uses the low distortion structure to reduce the output swing of the integrator. Therefore, we can use the single stage opamp to meet the specification of opamp, the power consumption can be greatly reduced. This 1.2-V, 80-MHz sampling frequency, 2.5-MHz signal bandwidth 2nd-order 4-bit quantizer sigma-delta modulator is design in TSMC 90-nm 1P9M CMOS process. From the simulation results, the SNDR is 50.52 dB and ENOB is 10.894 bits under the 16X OSR. The FoM is 156.6 fJ/conversion.
[1] J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini, and H.-S. Lee, “ Comparator-based switched-capacitor circuits for scaled CMOS technologies,” IEEE J. Solid-State Circuits, vol. 41, pp. 2658–2668, Dec. 2006.
[2] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston. MA: McGraw-Hill, 2001.
[3] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, 1997.
[4] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York: IEEE Press, 2005.
[5] A. M. Abo and P. R. Gray”, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, pp. 599-606, May 1999.
[6] M. C. Huang and S. I. Liu, “A fully differential comparator-based switched-capacitor delta sigma modulator,” IEEE Trans. Circuits Syst. II-Express Briefs, vol. 53, pp. 369-373, May 2009.
[7] T. Musah and U. K. Moon, “Pseudo-differential zero-corssing-based circuit with differential error suppression,” in Proc. IEEE Int. Symp. Circuits and Syst., May 2010, pp.1731-1734.
[8] J. Li and U. K. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique,” IEEE J. Solid-State Circuits, vol. 39, pp.1468–1476, Sep. 2004.
[9] P. Y. Wu, V. S. L. Cheung, and H. C. Luong, “A 1-V 100-MS/s 8-bit CMOS switched-opamp pipelined ADC using loading-free architecture,” IEEE J. Solid-State Circuits, vol. 42, pp.730–738, Apr. 2007.
[10] J. Silva, U. Moon, J. Steensgaard, and G. C. Temes, “Wideband low-distortion delta–sigma ADC topology,” Electron. Lett., vol. 37 , pp. 737–738, Jun. 2001.
[11] A. Gharbiya and D. A. Johns,“ On the implementation of input-feedforward delta-sigma modulators,” IEEE Trans. Circuits Syst. II-Express Briefs, vol. 53, pp.453-457, Apr. 2006.
[12] S. Weilun and G.C. Temes, “Double-sampled ΔΣ modulator with relaxed feedback timing”, in Proc. IEEE Int. Midwest Symp. on Circuits and Syst., Aug. 2009, pp. 393 – 396.
[13] A. Nilchi and D. A. Johns, “Charge-pump based switched-capacitor integrator for ds modulators,” Electron. Lett., vol. 46, pp. 400-401, Mar. 2010.
[14] A. Nilchi and D. A. Johns, “ Analysis of thermal noise and the effect of parasitics in the charge-pump integrator,” in Proc. Ph.D. Research in Microelectronics and Electronics, Jul. 2010, pp.1-4.
[15] R. Schreier, J. Silva, J. Steensgaard, and G.C. Temes, ” Design-oriented estimation of thermal noise in switched-capacitor circuits,” IEEE Trans. Circuits Syst. I-Regul. Pap, vol. 52, pp. 2358 – 2368, Nov. 2005.
[16] J. F. Lin, S. J. Chang, and C. F. Chiu, H. H. Tsai and J.-J. Wang, "Low-power and wide-bandwidth cyclic ADC with capacitor and opamp reuse techniques for CMOS image sensor application," IEEE Sensors J., vol.9, pp.2044-2054, Dec. 2009.
[17] R. T. Baird and T. S. Frez, “Improved delta-sigma DAC linearity using data weighted averaging,” in Proc. Int. Symp. Circuits and Syst., May 1995, pp. 13-16.
[18] L. Fujcik, T. Mougel, J. Haze, R. Vrba,” Modeling and design of novel architecture of multibit switched-capacitor sigma-delta converter with two-step quantization process,” in Proc. Networking, Int. Conf. on Syst. and Int. Conf. on Mobile Commun. and Learning Tech., Apr. 2006, pp. 186-191.
[19] B. Murmann, "ADC Performance Survey 1997-2008," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.
[20] K. Lee, J. Chae, M. Aniya, K. Hamashita, K. Takasuka, S. Takeuchi, and G.C. Temes, ” Noise-coupled time-interleaved delta-sigma ADC with 4.2 MHz bandwidth, -98 dB THD, and 79 dB SNDR,” IEEE J. Solid-State Circuits, vol. 43, pp. 2601-2612, Dec. 2008.
[21] L. Ding, S. Chan, K.-F. Wong, S.-W. Sin, S.-P. U, and R. P. Martins, “A pseudo-differential comparator-based pipelined ADC with common mode feedforward technique” , in Proc. IEEE Asia Pacific Conf. on Circuits and Syst., Dec. 2008, pp. 276-279.
[22] B. Hershberg, S. Weaver, and U. K. Moon, “Design of a split-CLS pipelined ADC with full signal swing using an accurate but fractional signal swing opamp”, IEEE J. Solid-State Circuits, vol. 45, pp. 2623-2633, Dec. 2010.
[23] M. C. Huang and S. I. Liu, “A 10-MS/s-to-100-kS/s power-scalable fully differential CBSC 10-bit pipelined ADC with adaptive biasing”, IEEE Trans. Circuits Syst. II-Express Briefs, pp. 11-15, Jan. 2010.
[24] S. K. Shin, Y. S. You, S. H. Lee, K.-H. Moon, J.-W. Kim, L. Brooks, and H.-S. Lee, “A fully-differential zero-crossing-based 1.2V 10b 26MS/s pipelined ADC in 65nm CMOS”, in Symp. VLSI Circuits Dig. Tech. Papers, pp. 218-219, June 2008
[25] L. Brooks, and H.-S. Lee, “A zero-crossing-based 8-bit 200 MS/s pipelined ADC”, IEEE J. Solid-State Circuits, vol. 12, pp. 2677-2687, Dec. 2007.
[26] E. Bilhan and F. Maloberti, “A wideband sigma-delta modulator with cross-coupled two-paths”, IEEE Trans. Circuits Syst. I-Regul. Pap, vol. 56, pp. 886-893, May 2009
[27] A. Gharbiy and D. A. Johns, “A 12-bit 3.125 MHz bandwidth 0–3 MASH delta-sigma modulator”, IEEE J. Solid-State Circuits, vol. 44, pp. 2010-2018, July 2009.
[28] K. Lee, M. R. Miller and G. C. Temes, “An 8.1 mW, 82 dB delta-sigma ADC with 1.9 MHz BW and 98 dB THD”, IEEE J. Solid-State Circuits, vol. 44, pp. 2202-2211, Aug. 2009.
[29] E. Bonizzoni, A. P. Perez, F. Maloberti, and M. A. Garcia-Andrade, “Two op-amps third-order sigma–delta modulator with 61-dB SNDR, 6-MHz bandwidth and 6-mW power consumption”, Analog Integr. Circ. S., pp.381–388, Mar. 2010.
[30] N. Maghari, S. Kwon and U.-K. Moon, ”74 dB SNDR multi-loop sturdy-MASH delta-sigma modulator using 35 dB open-loop opamp gain”, IEEE J. Solid-State Circuits, vol. 44, pp.2212-2221, Aug. 2009.