| 研究生: |
李佩臻 Li, Pei-Chen |
|---|---|
| 論文名稱: |
高污染細懸浮微粒與其影響因子之組合特徵及關聯性之研究 Research on the Cluster Characteristics and Correlations of High- Pollution Particulate Matter and Its Influenced Factors |
| 指導教授: |
李俊霖
Lee, Chun-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 高污染濃度 、細懸浮微粒 、集群分析 、迴歸分析 |
| 外文關鍵詞: | High Pollution Concentration, Fine Particulate Matter, Cluster Analysis, Regression Analysis |
| 相關次數: | 點閱:74 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
WHO(2021)全球空氣品質準則報告指出,空氣污染相關的疾病對於全球人類的健康造成極大的損害,同時也對人類賴以生存的環境產生極大的負擔,根據環境局之PM2.5污染濃度資料顯示雲嘉南及高屏地區的空氣品質狀況較差,為更需要關注其空氣品質狀態之地區。然而目前對於PM2.5及影響因子的研究大多是討論PM2.5濃度與影響因子間的關聯性,但在討論兩者關係前,先了解污染濃度及各項影響因子的空間分布狀況及資料特徵後再驗證兩者的關聯性是更具意義的;多數文獻對於污染濃度影響的討論大多透過土地使用、交通與建築等面向進行切入,在植栽對於PM2.5 污染濃度影響的研究多以綠覆率等尺度較大的因子進行研究,對於植栽特性與PM2.5污染濃度影響著墨則相對較少,故本研究先透過文獻回顧了解PM2.5潛在的影響因子,同時也納入植栽特性作為影響因子的一部分,並在PM2.5污染濃度較高的時間區段下對污染濃度資料及各項影響因子進行集群分析以了解各項資料的特徵,再進一步針對不同組合狀況建立回歸模型以了解PM2.5污染濃度與各項影響因子之關聯性。
研究結果發現在污染濃最高的組別中工業土地使用面積占比及建物平均高度兩項影響因子對PM2.5污染濃度具有顯著的影響,而在污染濃度次高的組別中污染濃度則是受到建物平均高度、住宅及商業土地使用面積占比及樹冠覆蓋面積占比與植被覆蓋面積占比之顯著影響,在汙染濃度較低的組別中則是受到一般道路面積占比及工業土地使用面積占比之影響,根據上述結果本研究,對後續研究提出以下幾點建議:1.更加完整的運用現有的測站資料,並且更大膽的依據空汙因子的特性選擇更適當的分析範圍;並可以嘗試更完整的全區分析。2.拓展分析時間的尺度,往污染濃度變化的方向更進一步的分析。3.除了線性迴歸,可依據汙染物與地方特性使用不同的迴歸方式。4.嘗試在準備資料中,使用更新的技術利於更直接的反應當下的情況。
The WHO (2021) report emphasizes that global air quality poses a significant threat to health and the environment, particularly in the Yunlin-Chiayi-Tainan and Kaohsiung-Pingtung regions where PM2.5 pollution is pronounced. Current research predominantly focuses on the correlation between PM2.5 concentrations and influencing factors. However, it is more meaningful to first understand the spatial distribution and characteristics of both the concentrations and factors before validating their interrelations. Planting characteristics are relatively underexplored in existing studies. This research, through a literature review of potential influencing factors, including planting characteristics, employs cluster analysis to explore distinct features during various periods. Results reveal that in the high pollution group, industrial land and building height significantly influence PM2.5. In the moderately polluted group, building height, residential-commercial land ratio, tree crown, and vegetation coverage demonstrate notable effects. The low pollution group is influenced by general road and industrial land ratios. Recommendations include a more comprehensive utilization of existing station data, selection of appropriate analysis scopes based on air pollution factor characteristics, expansion of temporal analysis scales, utilization of multivariate regression approaches, and incorporation of updated technologies for improved real-time data accuracy.
中文期刊
孙敏、陈健、林鑫涛、杨山 (2018) 城市景观格局对 PM2. 5 污染的影响. 浙江农林大学学报,35,pp. 135-144
行政院環保署. (2021). 空氣品質監測年報.
行政院環境保護署空保處. (2009). 環保署公布「空氣品質淨化能力樹種分級」. 行政院環境部新聞專區. Retrieved November 1 from https://enews.moenv.gov.tw/page/3b3c62c78849f32f/c1eb745d-87f7-43da-932b-5e080cd6f0e8
行政院環境部. (2022). 污染物特性及影響要素. 行政院環境部空氣品質監測網. Retrieved August 22 from https://airtw.moenv.gov.tw/CHT/Encyclopedia/pedia07/pedia7_2.aspx
行政院環境部. (2023). 相關名詞定義. 行政院環境部空氣品質監測網. Retrieved August 17 from https://airtw.moenv.gov.tw/CHT/Encyclopedia/FAQ/relatednoun.aspx
何舜華. (2017). 台北市路邊自行車專用道之 PM2. 5 暴露.
林彥廷. (2014). 臺灣常見闊葉樹種葉面滯留懸浮微粒定量分析.
林師模、 陳苑欽. (2023) 多變量分析管理上的應用 台北市: 雙葉書廊有限公司.
林晉陞 (2022). 都市公園空氣品質淨化效益之測定與模式驗證:以臺中市文心森林公園為例. 森林學系所 (Vol. 碩士, pp. 94). 台中市: 國立中興大學.
林震岩 (2007). 多變量分析:SPSS的操作與應用. In: 智勝文化.
陳文波、 谢涛、郑蕉、吴双 (2020). 地表植被景观对 PM 2.5 浓度空间分布的影响研究. 生态学报 (Vol. 40, pp. 7044-7053).
陳順宇. (1998). 多變量分析. In: 華泰書局.
曾于庭, 吳治達, & 龍世俊. (2018). 應用土地利用迴歸模式推估北部空品區細懸浮微粒之時空分布. In 航測及遙測學刊 (Vol. 23, pp. 191-204).
曾芷琳, 蕭雅萍, 曾于庭, 陳穆貞, 龍世俊, & 吳治達. (2019). 整合空間資訊技術與土地利用迴歸模式推估高屏空品區細懸浮微粒之時空分布. In 航測及遙測學刊 (Vol. 24, pp. 79-87).
楊舒百. (2017). 道路植栽設計對懸浮微粒濃度分布影響之研究. 園藝暨景觀學系 (Vol. 碩士, pp. 1-75): 國立臺灣大學.
葉沛廷、 蘇瑛敏. (2021). 基於透空式建築型態的街谷細懸浮微粒汙染物擴散數值模擬. 建築學報 (pp. 69-95).
劉瓊霦、張湘華、 伍珍瞱、 劉恩妤. (2008). 平地綠化樹種對空氣懸浮微粒和重金屬的截留能力比較研究.
劉瓊霦、劉恩妤. (2017). 都市行道樹對空氣污染物淨化功能監測. In 林業研究專訊 (Vol. 24, pp. 17-21).
蘇子豪. (2022). 都市林的生態系服務:空氣汙染物的截留、生物性監測之應用及空氣品質的提升. 森林學系所 (Vol. 博士, pp. 165). 台中市: 國立中興大學.
顧栢榕. (2017). 台北市四種行道樹對大氣沉降物的截留比較.
英文期刊
Akhtar, R., & Palagiano, C. (2018). Climate Change and Air Pollution: An Introduction. In R. Akhtar & C. Palagiano (Eds.), Climate Change and Air Pollution: The Impact on Human Health in Developed and Developing Countries (pp. 3-8). https://doi.org/10.1007/978-3-319-61346-8_1
Almetwally, A. A., Bin-Jumah, M., & Allam, A. A. (2020). Ambient air pollution and its influence on human health and welfare: an overview. Environmental Science and Pollution Research, 27(20), 24815-24830. https://doi.org/10.1007/s11356-020-09042-2
Baro, F., Calderon-Argelich, A., Langemeyer, J., & Connolly, J. J. T. (2019). Under one canopy? Assessing the distributional environmental justice implications of street tree benefits in Barcelona [Article]. Environmental Science & Policy, 102, 54-64. https://doi.org/10.1016/j.envsci.2019.08.016
Chun, B., Choi, K., & Pan, Q. S. (2022). Key determinants of particulate matter 2.5 concentrations in urban environments with scenario analysis [Article]. Environment and Planning B-Urban Analytics and City Science, 49(7), 1980-1994, Article 23998083221078306. https://doi.org/10.1177/23998083221078306
Ciro, D. V., Barriga, J. E. C., & Rincon, I. C. H. (2021). The removal of PM2.5 by trees in tropical Andean metropolitan areas: an assessment of environmental change scenarios [Article]. Environmental Monitoring and Assessment, 193(7), 16, Article 396. https://doi.org/10.1007/s10661-021-09171-2
Cui, P., Dai, C. Y., Zhang, J., & Li, T. T. (2022). Assessing the Effects of Urban Morphology Parameters on PM2.5 Distribution in Northeast China Based on Gradient Boosted Regression Trees Method [Article]. Sustainability, 14(5), 19, Article 2618. https://doi.org/10.3390/su14052618
Dhimal, M., Chirico, F., Bista, B., Sharma, S., Chalise, B., Dhimal, M. L., Ilesanmi, O. S., Trucillo, P., & Sofia, D. (2021). Impact of Air Pollution on Global Burden of Disease in 2019. Processes, 9(10), Article 1719. https://doi.org/10.3390/pr9101719
Duan, S. Y., Liu, Q., Jiang, D. M., Jiang, Y. L., Lin, Y. Z., & Gong, Z. Y. (2021). Exploring the Joint Impacts of Natural and Built Environments on PM2.5 Concentrations and Their Spatial Heterogeneity in the Context of High-Density Chinese Cities [Article]. Sustainability, 13(21), 15, Article 11775. https://doi.org/10.3390/su132111775
Farrell, W., Weichenthal, S., Goldberg, M., Valois, M.-F., Shekarrizfard, M., & Hatzopoulou, M. (2016). Near roadway air pollution across a spatially extensive road and cycling network. Environmental Pollution, 212, 498-507.
Grzezicka, E. (2019). Is the existing urban greenery enough to cope with current concentrations of PM2.5, PM10 and CO2? Atmospheric Pollution Research, 10(1), 219-233. https://doi.org/10.1016/j.apr.2018.08.002
Hankey, S., & Marshall, J. D. (2015). Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring [Article]. Environmental science & technology, 49(15), 9194-9202. https://doi.org/10.1021/acs.est.5b01209
He, Q. S., Rao, Y. X., Dai, J. Y., Dai, D. Y., & Ou, G. L. (2022). Effect of Urban Structure on PM2.5 in China: A Multiscale Landscape Analysis of 362 Cities [Article]. Journal of Urban Planning and Development, 148(2), 13, Article 05022010. https://doi.org/10.1061/(asce)up.1943-5444.0000831
Hellack, B., Sugiri, D., Schins, R. P. F., Schikowski, T., Kramer, U., Kuhlbusch, T. A. J., & Hoffmann, B. (2017). Land use regression modeling of oxidative potential of fine particles, NO2, PM2.5 mass and association to type two diabetes mellitus [Article]. Atmospheric Environment, 171, 181-190. https://doi.org/10.1016/j.atmosenv.2017.10.017
Khreis, H., Warsow, K. M., Verlinghieri, E., Guzman, A., Pellecuer, L., Ferreira, A., Jones, I., Heinen, E., Rojas-Rueda, D., & Mueller, N. (2016). The health impacts of traffic-related exposures in urban areas: Understanding real effects, underlying driving forces and co-producing future directions. Journal of Transport & Health, 3(3), 249-267.
Knibbs, L. D., van Donkelaar, A., Martin, R. V., Bechle, M. J., Brauer, M., Cohen, D. D., Cowie, C. T., Dirgawati, M., Guo, Y. M., Brauer, M., Cohen, D. D., Cowie, C. T., Dirgawati, M., Guo, Y. M., Hanigan, I. C., Johnston, F. H., Marks, G. B., Marshall, J. D., Pereira, G., . . . Barnett, A. G. (2018). Satellite-Based Land-Use Regression for Continental-Scale Long-Term Ambient PM2.5 Exposure Assessment in Australia [Article]. Environmental science & technology, 52(21), 12445-12455. https://doi.org/10.1021/acs.est.8b02328
Li, J. Y., & Huang, X. (2020). Impact of land-cover layout on particulate matter 2.5 in urban areas of China [Article]. International Journal of Digital Earth, 13(4), 474-486. https://doi.org/10.1080/17538947.2018.1530310
Li, K. M., Li, C. L., Liu, M., Hu, Y. M., Wang, H., & Wu, W. (2021). Multiscale analysis of the effects of urban green infrastructure landscape patterns on PM<sub>2.5</sub> concentrations in an area of rapid urbanization [Article]. Journal of Cleaner Production, 325, 12, Article 129324. https://doi.org/10.1016/j.jclepro.2021.129324
Liu, C., Henderson, B. H., Wang, D. F., Yang, X. Y., & Peng, Z. R. (2016). A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China [Review]. Science of the Total Environment, 565, 607-615. https://doi.org/10.1016/j.scitotenv.2016.03.189
Nieuwenhuijsen, M. J., & Khreis, H. (2016). Car free cities: Pathway to healthy urban living [Review]. Environment International, 94, 251-262. https://doi.org/10.1016/j.envint.2016.05.032
Park, S. H., & Ko, D. W. (2018). Investigating the Effects of the Built Environment on PM2.5 and PM10: A Case Study of Seoul Metropolitan City, South Korea [Article]. Sustainability, 10(12), 11, Article 4552. https://doi.org/10.3390/su10124552
Sabaliauskas, K., Jeong, C.-H., Yao, X., Reali, C., Sun, T., & Evans, G. J. (2015). Development of a land-use regression model for ultrafine particles in Toronto, Canada. Atmospheric Environment, 110, 84-92. https://doi.org/https://doi.org/10.1016/j.atmosenv.2015.02.018
Shi, Y., Bilal, M., Ho, H. C., & Omar, A. (2020). Urbanization and regional air pollution across South Asian developing countries - A nationwide land use regression for ambient PM<sub>2.5</sub> assessment in Pakistan [Article]. Environmental Pollution, 266, 11, Article 115145. https://doi.org/10.1016/j.envpol.2020.115145
Shi, Y., Lau, K. K. L., & Ng, E. (2016). Developing Street-Level PM<sub>2.5</sub> and PM<sub>10</sub> Land Use Regression Models in High-Density Hong Kong with Urban Morphological Factors [Article]. Environmental science & technology, 50(15), 8178-8187. https://doi.org/10.1021/acs.est.6b01807
Superczynski, S. D., & Christopher, S. A. (2011). Exploring Land Use and Land Cover Effects on Air Quality in Central Alabama Using GIS and Remote Sensing [Article]. Remote Sensing, 3(12), 2552-2567. https://doi.org/10.3390/rs3122552
Weichenthal, S., Farrell, W., Goldberg, M., Joseph, L., & Hatzopoulou, M. (2014). Characterizing the impact of traffic and the built environment on near-road ultrafine particle and black carbon concentrations. Environmental Research, 132, 305-310.
WHO. (2021). WHO global air quality guidelines. WHO European Centre for Environment and Health.
Wieser, A. A., Scherz, M., Passer, A., & Kreiner, H. (2021). Challenges of a Healthy Built Environment: Air Pollution in Construction Industry. Sustainability, 13(18), Article 10469. https://doi.org/10.3390/su131810469
Wolf, K., Cyrys, J., Harcinikova, T., Gu, J. W., Kusch, T., Hampel, R., Schneider, A., & Peters, A. (2017). Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany [Article]. Science of the Total Environment, 579, 1531-1540. https://doi.org/10.1016/j.scitotenv.2016.11.160
Wu, C.-H., Tsai, I.-C., Tsai, P.-C., & Tung, Y.-S. (2019). Large–scale seasonal control of air quality in Taiwan. Atmospheric Environment, 214, 116868.
Wu, J., Xie, W., Li, W., & Li, J. (2015). Effects of urban landscape pattern on PM2. 5 pollution—a Beijing case study. Plos One, 10(11), e0142449.
Wu, J. S., Wang, Y., Qiu, S. J., & Peng, J. (2019). Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation [Article]. Science of the Total Environment, 688, 673-683. https://doi.org/10.1016/j.scitotenv.2019.05.437
Yang, J. Y., Shi, B. X., Shi, Y., Marvin, S., Zheng, Y., & Xia, G. Y. (2020). Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustainable Cities and Society, 54, Article 101941. https://doi.org/10.1016/j.scs.2019.101941
Yin, Z., Zhang, Y. X., & Ma, K. M. (2022). Evaluation of PM2.5 Retention Capacity and Structural Optimization of Urban Park Green Spaces in Beijing [Article]. Forests, 13(3), 13, Article 415. https://doi.org/10.3390/f13030415
Yuan, M., Song, Y., Huang, Y. P., Shen, H. F., & Li, T. W. (2019). Exploring the association between the built environment and remotely sensed PM2.5 concentrations in urban areas. Journal of Cleaner Production, 220, 1014-1023. https://doi.org/10.1016/j.jclepro.2019.02.236