簡易檢索 / 詳目顯示

研究生: 洪照俊
Horng, Jaw-Juinn
論文名稱: 氮化鎵系列二極體與CMOS電路模組化後的性能改善
The Performance Enhancement of Modularized Nitride-based Diodes and CMOS Circuit
指導教授: 蘇炎坤
Su, Yan-Kuin
張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 126
中文關鍵詞: 模組二極體
外文關鍵詞: MODULE, DIODE
相關次數: 點閱:69下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用wire bonding與封裝技術將氮化鎵二極體與CMOS電路模組化。 由於氮化鎵二極體的磊晶材料或者磊晶架構在亮度,可靠度及抗靜電力改善均有其限制,於是我們利用CMOS chip對於散熱與抗靜電力有很好的特性,增強其亮度,可靠度及抗靜電力,甚至使用CMOS circuit來對氮化鎵二極體有很好的電氣特性控制。在part I將先討論LED diode。 我們將一個藍光功率LED diode與CMOS ESD保護電路使用flip-chip的方式封裝成為模組,利用CMOS chip幫助功率二極體散熱,可發現功率二極體的輸出亮度增加20%,功率二極體模組在室溫且偏壓電流為450 mA之下,經過400小時的操作之後,亮度只有2-3%衰減。另外整體的抗靜電力也因CMOS circuit的加入, 使得功率二極體模組在雙向的人體保護模式(Human-Body Model,HBM)抗靜電能力可達15KV. 而不同的LED之間其偏壓電流不盡相同,造成亮度不穩定。本文會將LED的控制方式,針對現有方法做一個介紹。
    Part II 將討論sensor diode。在抗靜電改善方面,由於sensor與LED的工作電壓區不同,無法使用LED diode的保護方式,於是我們將Schottky type的sensor,與CMOS chip封裝在一起,CMOS chip含有一新型的抗靜電電路,可保護sensor不受靜電破壞。此模組的responsivity不會因為CMOS chip而下降,但其在雙向的HBM 抗靜電能力,比單一的sensor有顯著的提升。在正向的HBM可大於8KV,而負向的HBM可達7.5KV。
    接著我們將此新型的抗靜電電路做一個分析,此抗靜電電路可通用於LED或者sensor diode。在使用了gate-driven或substrate-triggering的技術之後,其會產生semiconductor-controlled rectifier (SCR) 電流路徑,大幅提升其thermal breakdown current到達9A。實驗結果顯示此抗靜電電路在2V的偏壓之下,且在頻率範圍為300KHz到3GHz之間,其兩個端點的isolation,由-75dB變化到-15dB,並且更改circuit layout即可更改holding voltage,在此情況之下與LED搭配時,不會產生latch-up現象。
    接著我們針對sensor的光電流的線性度與變異性,提出了一個新的架構與CMOS chip搭配,利用新的模組化方式來校正差異性。由於不同模組之間可能因為封裝和sensor差異,其產生的光電流值呈現不穩定,實驗結果顯示,相同的照光環境之下,不同的sensor模組其產生的光電流變化可達26%。此變化使的要大量生產具高準確度的UV detection模組,變得很困難。新的模組可在測試過程中校正且在經過校正之後,準確度可大幅提高,達成量產化的高準確度UV detection模組。

    In this dissertation, a series of GaN diode modules have been successfully designed and demonstrated by using wire-bonding and package technique. Even the epitaxy material and structure of GaN diodes have been popularly investigated; they still have the limitation on brightness, reliability and electrostatic discharge (ESD) ability. So GaN diode can be combined with CMOS chip as heat dissipation, ESD protection circuit and driver circuit to overcome those limitations. At first, the improvement technique of GaN LED will be discussed in the Part I. A power light emitting diode (LED) module has been successfully designed and demonstrated by combining GaN-based power LEDs with complementary metal-oxide-semiconductor (CMOS) electrostatic ESD protection circuits through flip-chip process. It was found that we could enhance power LED output intensity by 20% by flip-chip technology. It was also found that the use of CMOS ESD protection circuits will not degrade output intensity and lifetime of flip-chip power LEDs. After 400 hours stress and under 450 mA bias current, it was found that luminous intensity only decreased by 2-3%. It was also found that the fabricated module can endure reverse and forward Human-Body Model (HBM) ESD stresses to 15 KV by the CMOS ESD protection circuits. The bias current variation of LED will cause the luminous unstable in different samples. In order to solve this problem, a new bias driver circuit that is layout with ESD device in the si-sub-mount will be proposed. Such algorithm will be introduced in the Part I.
    The part II will introduce the ESD, reliability and better yield solution for sensor diode. We proposed and realized a new CMOS ESD chip to form a nitride-based Schottky barrier sensor module with high electrostatic discharge (ESD) reliability. By including a Si-based ESD protection chip into the sensor diode, we can significantly enhance endurable ESD voltages under both forward and reverse human body model (HBM) ESD stresses. It was found that the inclusion of the Si-based ESD protection chip will not result in a decrease in detector responsivity. It was also found that the fabricated module can endure reverse HBM ESD stress of 7.5 KV and forward HBM ESD stress larger than 8 KV. This ESD performance is better than a unique sensor diode.
    Next, the fully bidirectional CMOS ESD protection device which can optionally connected between two pads is analyzed. The structure shows it can protect the LED or sensor diode from ESD damage. When it applied with gate-driven or substrate triggered technique, it has robust ESD due to induced semiconductor-controlled rectifier (SCR) current path. This structure has demonstrated that thermal breakdown current (It2) can be improved to 9 A without modifying any CMOS processes. The experiment result shows the isolation between two pad with 2V bias is from -75 to –15 dB when frequency range is from 300 KHz to 3 GHz. And its flexible holding voltage is used to avoid the latch-up problem that’s helpful in some LED application.
    Finally, a CMOS driver will modularize with a GaN p-i-n UV sensor to calibrate the linearity and variation of photocurrent for difference samples. The variation of photocurrent between different UV sensors may caused by sensor variation or package process. The experiment results shows, several UV sensors underwent the same illumination level but exhibited different photocurrents reaching to a maximum variation of 26%. This large variation will leads to a poor accuracy in the UV sensor module. The new UV sensor module can calibrate in testing process and it will have a high accuracy after calibration process to achieve mass production requirement.

    CONTENTS ABSTRACT (In Chinese) ...i ABSTRACT (In English) ...iii CONTENTS ...v TABLE CAPTIONS ...vii FIGURE CAPTIONS ...viii CHAPTER 1 INTRODUCTION 1.1 BACKGROUND ...1 CHAPTER 2 BACKGROUND OF TESTING ENVIROMENT 2.1 ESD THEOREM ...7 2.2 HUMAN-BODY-MODEL (HBM) TEST ...8 2.3 MACHINE-MODEL (MM) TEST ...9 2.4 TRANSMISSION-LINE-PULSE (TLP) TEST...10 2.5 PIN COMBINATION FOR ESD STRESS TESTING ON HBM AND MM ...11 2.6 TESTING EQUIPMENT FOR GaN DIODE ...12 PART I GaN LED WITH CMOS CIRCUIT CHAPTER 3 GaN-BASED FLIP-CHIP POWER LEDS WITH CMOS ESD PROTECTION CIRCUITS SUB-MOUNT 3.1 INTRODUCTION ...23 3.2 CMOS ESD PROTECTION CIRCUITS ...25 3.3 LED FABRICATION ...26 3.4 RESULTS AND DISCUSSION ...28 3.5 CONCLUSION ...32 CHAPTER 4 LED DRIVER BUILT IN SILICON-SUB-MOUNT 4.1 INTRODUCTION ...44 4.2 LED CONNECTION IN PARALLEL ...45 43 LED CONNECTION IN SERIES ...46 4.4 PWM WAVEFORM CONTROLLED LED DRIVER ...46 4.5 PROPOSED FUNCTION BLOCK ...48 4.6 TEMPERATURE SENSE CIRCUIT ...49 4.7 PWM CONTROL CIRCUIT ...50 4.8 SIMULATION RESULT ...50 4.9 DISSCUSSION ...51 PART II GaN SENSOR WITH CMOS CIRCUIT CHAPTER 5 NITRIDE-BASED SCHOTTKY BARRIER SENSOR MODULE WITH HIGH ESD RELIABILITY 5.1 INTRODUCTION ...62 5.2 PROCESS OF UV SENSOR ...62 5.3 SCHEMATIC OF CMOS ESD PROTECTION CIRCUIT ...63 5.4 RESULTS AND CONCLUSION ...65 5.5 CONCLUSION ...68 CHAPTER 6 A PROPRIETARY ESD PROTECTION DEVICE WITH ENHANCED ESD ROBUSTNESS FOR GaN DIODE 6.1. INTRODUCTION ...76 6.2 DEVICE STRUCTURE ...76 6.3 EXPERIMENTAL RESULTS ...79 6.4 CONCLUSION ...81 CHAPTER 7 AN ACCURATE SELF-CALIBRATED UV-A INDEX INDICATOR MODULE WITH GaN P-I-N SENSOR AND SMART CMOS DRIVER CHIP 7.1 INTRODUCTION ...87 7.2 STRUCTURE OF THE SYSTEM MODULE ...89 7.3 STRUCTURE AND FABRICATION OF UV SENSOR ...89 7.4 CIRCUIT OF CMOS DRIVER CHIP ...90 7.4.1 CALIBRATION UNIT ...91 7.4.1.1 CONSTANT CURRENT BANDGAP BIAS ...92 7.4.1.2 CURRENT DAC ...93 7.4.1.3 CURRENT COMPARE AMPLIFIER ...97 7.4.1.4 JUDGE PROCESSOR ...97 7.4.2 UV STRENGTH DISPLAY UNIT ...98 7.5 RESULT AND DISCUSSION ...98 7.6 CONCLUSION ...103 CHAPTER 8 CONCLUSION ...117 APPENDIX A THE BIDIRECTIONAL CMOS ELECTROSTATIC DISCHARGE PROTECTION DEVICE FOR DUAL POWER SUPPLY IN RF AND MIXED-MODE IC A.1. INTRODUCTION ...120 A.2 EXPERIMENTAL RESULTS ...121 A.3 CONCLUSION ...122 PUBLICATION LIST ...126

    CHAPTER1 REFERENCES:
    [1] Y. Matsushita, T. Uetani, T. Kunisato, J. Suzuki, Y. Ueda, K. Yagi, T. Yamaguchi, and T. Niina, Jpn. J. Appl. Phys. Part1, 34, pp. 1833-1840, 1995
    [2] J. D. Brown, J. T. Swindell, M. A. L. Johnson, Yu Zhonghai, J. F. Schetzina, G. E. Bulman, K. Doverspike, S. T. Sheppard, T. W. Weeks, M. Leonard, H. S. Kong, H. Dieringer, C. Carter, and J. A. Edmond, Nitride Semiconductor or Symposium, Mat. Res. Soc., pp. 1179-1181, 1998
    [3] M. A. Haase, J. Qinu, J. M. Depuydt, and H. Cheng, Appl. Phys. Lett., vol. 59, pp. 1272-1274, 1991
    [4] H. Jeon, J. Ding, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi, R. L. Gunshor, G. C. Hua, and N. Otsuka, Appl. Phys. Lett. Vol. 60, pp. 2045-2047, 1992
    [5] W. Xie, D. C. Grillo, R. L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A. V. Nurmikko, G. C. Hua, and N. Otsuka, Appl. Phys. Lett., vol. 60, pp. 1999-2001, 1992
    [6] R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesel, G. Borghs, G. H. Dohler and P. Heremans, IEEE Trans. Electron. Dev., Vol. 47, pp. 1492-1498, 2000.
    [7] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, J. J. Hsu, C. H. Liu, U. H. Liaw, S. C. Chen, and B. R. Huang, IEEE Photon. Tech. Lett., Vol. 14, No. 12, pp. 1668-1670, 2002
    [8] L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, T. C. Wen, C. H. Kuo, W. C. Lai, C. S. Chang, J. M. Tsai and J. K. Sheu, IEEE Tran. Electron. Dev., Vol. 50, pp. 1766-1770, 2003.
    [9] C. S. Chang, S. J. Chang, Y. K. Su, Y. Z. Chiou, Y. C. Lin, Y. P. Hus, S. C. Shei, J. C. Ke, H. M. Lo, S. C. Chen and C. H. Liu, Jpn. J. Appl. Phys. Vol. 42 pp. 3324-3327 Part1, No. 6A, 2003
    [10] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, Y. C. Lin and C. H. Chen, Jpn. J. Appl. Phys. Vol. 41 pp. 3643-3645 Part1, No. 6A, June. 2002
    [11] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 744-748, 2002.
    [12] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 744-748, 2002
    [13] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett., Vol. 48, pp. 353-355, 1986
    [14] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., Vol. 28, pp. L2112-L2115, 1989
    [15] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Inst. Phys. Conf. Ser. 106, pp. 725-728, 1989
    [16] S. Nakamura, N. Isawa, M. Seno, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys., Vol. 31, pp. 1258-1261, 1992
    [17] S. Nakamura, N. Isawa, M. Seno, and T. Mukai,, “Thermal annealing effects on p-type Mg-doped GaN films,’’ Jpn. J. Appl. Phys. vol. 31, p.L139 –L142, 1992
    [18] S. Nakamura, N. Isawa, M. Seno, and T. Mukai,, “Highly p-typed Mg-doped GaN films grown on GaN buffer layers,” Jpn. J. Appl. Phys. vol. 30, p. L1708-L1711, 1991.
    [19] K. Osamura, K. Nakajima, and Y. Murakami, “Fundamental absorption edge in GaN, InN, and their alloys,” Solid State Commun., vol. 11, pp. 617-621, 1972.
    [20] J. Hagen, R. D. Metcalfe, D. Wickenden, and W. Clark, “Growth and properties of Ga,AI1-,N compounds,” J. Phys. C., vol. 11, pp. L143-Ll46, 1978.
    [21] S. Tanaka, M. Takeuchi, and Y. Aoyagi, Jpn. J. Appl. Phys., Vol. 39, pp. L831-L834,2000
    [22] O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, Appl. Phys. Lett., vol. 76, pp. 2361-2363, 2000
    [23] Neil Chadderton, Colin Davies, Roger Heap, “DN83 LED MR16 Lamp solution using the ZXLD1350 LED driver”, Zetex Semiconductors, Aug, 2007

    CHAPTER2 REFERENCES:
    [1] C. Duvvury, R. N. Rountree, and 0. Adams, “Internal chip ESD phenomena beyond the protection circuit,” IEEE Trans. on Electron Devices, vol. 35, pp. 2133-2139, Dec., 1988.
    [2] M. D. Jaffe and P. E. Cottrell, “Electrostatic discharge protection in a 4-Mbit DRAM,” EOS/ESD Symp. Proc., EOS-12 1990,pp 195-201
    [3] C. C. Johnson, T. J. Maloney, and S. Qawami, “Two unusual HBM ESD failure mechanisms on a mature CMOS process,” EOS/ESD Symp. Proc., 1993, EOS-15, pp. 225-231.
    [4] H. Terletzki, W. Nikutta, and W. Reczek, “Influence of the series resistance of on-chip power supply buses on internal device failure after ESD stress,” IEEE Trans. on Electron Devices, vol. 40, pp. 208 1-2083, Nov., 1993.
    [5] C. Cook and S. Daniel, “Characterization of new failure mechanisms arising from power-pin ESD stressing,” EOS/ESD Symp. Proc., 1993, EOS-15, pp. 149-156.
    [6] S. Daniel and G. Krieger, “Process and design optimization for advanced CMOS ESD protection devices,” in EOS/ESD S-ymp. Proc., vol. EOS-12, 1990, pp. 206-213.
    [7] A. Chatterjee and T. Polgreen, “A low-voltage triggering SCR for onchip ESD protection at output and input pads,” IEEE Electron Device Lett., vol: 12, pp. 21-22, Jan. 1991.
    [8] C. Duvvury and C. Diaz, “Dynamic gate coupling of NMOS for efficient output ESD protection,” in Proc. IRPS, 1992, pp. 141-150.
    [9] F.-C. Nsu, P.-K. KO, S. Tam, C. Hu, and R. S. Muller, “An analytical breakdlown model for short-channel MOSFET’s,” IEEE Trans. Electron Devices, vol. 29, pp. 1735-1740, Nov. 1982.
    [10] Y. Fong and C. Hu, “High-current snapback characteristics of MOSFET’s,” lEEE Trans. Electron Devices, vol. 37, pp. 2101-2103, 1990.
    [11] K.-L. Chen, “The effects of interconnect process and snapback voltage on the ESD failure threshold of NMOS transistor,” IEEE Trans. Electron Devices, vol. 35, pp. 2140-2150, Dec. 1988.
    [12] M.-D. Ker et al., “Complementary-LVTSCR ESD protection scheme for submicron CMOS IC’s,” in Proc. IEEE Int. Symp. Circuits Syst., 1995, pp. 833-836.
    [13] “Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)”, JESD22-A114E (Revision of JESD22-A114D, March 2006), JAN 2007, JEDEC SOLID STATE TECHNOLOGY ASSOCIATION
    [14] “Electrostatic Discharge (ESD) Sensitivity Testing Machine Model (MM)”, EIA/JESD22-A115-A (Revision of EAI/JESD22-A115), OCT 1997, ELECTRONIC INDUSTRIES ASSOCIATION ENGINEERING DEPARTMENT
    [15] T. Maloney and N. Khurana, "Transmission Line Pulsing Techniques for Circuit Modeling of ESD Phenomena" EOS/ESD Symposium Proceedings, EOS-7. 1985 pp. 49-54.
    [16]. N. Khurana, T. Maloney and W. Yeh. “ESD on CHMOS Devices – Equivalent Circuits, Physical Models and Failure mechanisms…1985 IEEE IRPS, p212.

    CHAPTER 3 REFERENCES:
    [1] S. Nakamura, T. Mukai and M, Senoh. “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes“, J. Appl. Phys., Vol. 76, No. 12, pp. 8189-8191, 1994
    [2] I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III-nitride semiconductors and their applications to short wavelength light emitters”, Jpn. J. Appl. Phys., Vol. 36, pp. 5393-5408, 1997.
    [3] S. J. Chang, C. H. Chen, P. C. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, H. Hung, C. M. Wang and B. R. Huang, "Nitride-based LEDs with p-InGaN capping layer", IEEE Tran. Electron. Dev., Vol. 50, No. 12, pp. 2567-2570, December 2003
    [4] C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo and Y. C. Lin, "Nitride-based cascade near white light emitting diodes", IEEE Photo. Technol. Lett., Vol. 14, No. 7, pp. 908-910, 2002
    [5] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart”, Science, Vol. 308, pp. 1274-1278, 2005.
    [6] J. I. Pankove, ”Perspective on gallium nitride”, Mater. Res. Soc. Symp. Proc., Vol. 162, pp. 515-519, May 1990.
    [7] S. P. Sim, M. J. Robertson and R. G. Plumb, “Catastrophic and latent damage in GaAlAs laser caused by electrical transient”, J. Appl. Phys., Vol. 55, pp. 3960-3955, 1984.
    [8] T. Inoue, ”Light-Emitting Devices” (in Japanese), Japanese Patent H11-040 848, 1999.
    [9] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu, and S. C. Chen, “Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes”, IEEE Electron Device Letter, Vol. 24, No.3, pp.341-343, 2003.
    [10] G. Meneghesso, S. Podda and M. Vanzi, “Investigation on ESD-stressed GaN/InGaN-on-sapphire blue LEDs”, Microelectronics Reliability, Vol. 41, No. 9-10, pp. 1609-1614, October 2001.
    [11] Y. K. Su, S. J. Chang, S. C. Wei, S. M. Chen and W. L. Li, "ESD engineering of nitride-based LEDs", IEEE Tran. Dev. Mater. Reliability, Vol. 5, No. 2, pp. 277-281, June 2005.
    [12] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 2, pp. 278-283, Mar/Apr 2002.
    [13] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, "400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 4, pp. 744-748, July/August 2002
    [14] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, "Highly reliable nitride based LEDs with SPS+ITO upper contacts", IEEE J. Quan. Electron., Vol. 39, No. 11, pp. 1439-1443, November 2003.
    [15] S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei and H. M. Lo, "Nitride-based flip-chip ITO LEDs", IEEE Tran. Adv. Packaging, Vol. 28, No. 2, pp. 273-277, May 2005.
    [16] J. R. Lee, S. L. Na, J. H. Jeong, S. N. Lee, J. S. Jang, S. H. Lee, J. J. Jung, J. O. Song, T. Y. Seong and S. J. Park, “Low resistance and high reflectance Pt/Rh contacts to p-type GaN for GaN-based flip chip light-emitting diodes”, J. Electrochem. Soc., Vol. 152, No. 1, pp. G92-G94, 2005
    [17] J. Song, D. S. Lee, J. S. Kwak, O. H. Nam, Y. Park and T. Y. Seong, “Low resistance and reflective Mg-doped indium oxide-Ag ohmic contacts for flip-chip light-emitting diodes”, IEEE Photon. Technol. Lett., Vol. 16, No. 6, pp. 1450-1452, 2004
    [18] J. C. Bha, A. Kim, D. Collins, R. Fletcher, R. Khare and S. Rudaz, “High efficiency monochromatic and white InGaN flip-chip dice”, Institute Phys. Conf. Series, Vol. 170, pp. 243-248, 2002
    [19] Y. Ohki, Y. Toyoda, H. Kobayashi and I. Akasaki, “Fabrication and properties of a practical blue-emitting GaN”, Inst. Phys. Conf. Ser., Vol. 63, pp. 479-486, 1981.
    [20] J. O. Song, W. K. Hong; Y. Park, J. S. Kwak and T. Y. Seong, “Low-resistance Al-based reflectors for high-power GaN-based flip-chip light-emitting diodes”, Appl. Phys. Lett., Vol. 86, p 133503-1-3, 2005.
    [22] A. Amerasekera, L. V. Roozendaal, J. Abderhalden, J. Bruines and L. Sevat, “An analysis of low voltage ESD damage in advanced CMOS processes”, Proc. EOS/ESD Symp., Vol. EOS-12, pp. 143-150. 1990.
    [23] J. E. Barth, K. Verhaege, L. G. Henry and J. Richner, “TLP calibration, correlation, standards, and new techniques”, IEEE Tran. Electron. Packag. Manufacturing, Vol. 24, pp. 99-108, 2001.

    CHAPTER 4 REFERENCES:
    [1] Robert W. Erickson, Dragan Makasimovic’, “Fundaments of power electronics”, second edition, Kluwer Academic publishers, 2001.
    [2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 2, pp. 278-283, Mar/Apr 2002.
    [3] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, "400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 4, pp. 744-748, July/August 2002
    [4] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, "Highly reliable nitride based LEDs with SPS+ITO upper contacts", IEEE J. Quan. Electron., Vol. 39, No. 11, pp. 1439-1443, November 2003.
    [5] J. P. Homan, “Heat transfer”, October 2001, McGraw-Hill College
    [6] “LM3405 1.6MHz, 1A Constant Current Buck Regulator for Powering LEDs”, Feb, 2007, National Semiconductor

    CHAPTER 5 REFERENCES:
    [1] S. Nakamura and M. Senoh, “Superbright green InGaN singlequantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys., vol. 34, pp. L1332–L1335, 1995.
    [2] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang, and Y. Z. Chiou, “Nitride-based light emitting diodes with textured sidewalls and pillar waveguides,” IEEE Photon. Technol. Lett., vol. 18, no. 23, pp. 2517–2519, Dec. 1, 2006.
    [3] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN–GaN multiquantum well blue and green light emitting diodes,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 2, pp. 278–283, Mar./Apr. 2002.
    [4] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science, vol. 308, pp. 1274–1278, 2005.
    [5] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1152–1154, May 15, 2006.
    [6] S. J. Chang, C. L. Yu, R. W. Chuang, P. C. Chang, Y. C. Lin, Y. W. Jhan, and C. H. Chen, “Nitride-based MIS-like photodiodes with semiinsulating Mg-doped GaN cap layers,” IEEE Sensors J., vol. 6, no. 5, pp. 1043–1044, Oct. 2006.
    [7] W. K.Wang, D. S.Wuu, S. H. Lin, P. Han, R. H. Horng, T. C. Hsu, D. T. C. Huo, M. J. Jou, Y. H. Yu, and A. K. Lin, “Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates,” IEEE J. Quantum Electron., vol. 41, no. 11, pp. 1403–1409, Nov. 2005.
    [8] W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu, and J. F. Chen, “InGaN–AlInGaN multiquantum-well LEDs,” IEEE Photon. Technol. Lett., vol. 13, no. 6, pp. 559–561, Jun. 2001.
    [9] N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, “Solar-blind AlGaNbased p-i-n photodiodes with low dark current and high detectivity,” IEEE Photon. Technol. Lett., vol. 16, no. 7, pp. 1718–1720, Jul. 2004.
    [10] S. J. Chang, C. F. Shen, S. C. Shei, R. W. Chuang, C. S. Chang, W. S. Chen, T. K. Ko, and J. K. Sheu, “Highly reliable nitride-based LEDs with internal ESD protection diodes,” IEEE Trans. Device Mater. Rel., vol. 6, no. 3, pp. 442–447, Sep. 2006.
    [11] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN metal-semiconductor-metal photodetectors with low-temperature GaN cap layers and ITO metal contacts,” IEEE Electron Device Lett., vol. 24, no. 4, pp. 212–214, Apr. 2003.
    [12] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu, and S. C. Chen, “Improved ESD protection by combining InGaN–GaN MQW LEDs with GaN Schottky diodes,” IEEE Electron Device Lett., vol. 24, no. 3, pp. 129–131, Mar. 2003.
    [13] T. Inoue, “Light-Emitting Device,” Japanese Patent H11-040848, 1999.
    [14] S. J. Chang, T. K. Ko, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen, and C. F. Shen, “GaN-based p-i-n sensors with ITO contacts,” IEEE Sensors J., vol. 6, no. 2, pp. 406–411, Apr. 2006.
    [15] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400 nm InGaN–GaN and InGaN–AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 4, pp. 744–748, Jul./Aug. 2002.
    [16] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, “Nitride-based LEDs with 800 C-grown p-AlInGaN–GaN double cap layers,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1447–1449, Jun. 2004.
    [17] S. J. Chang, W. S. Chen, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, C. F. Shen, J. M. Tsai, and S. C. Shei, “Nitride-based flip-chip LEDs with transparent ohmic contacts and reflective mirrors,” IEEE Trans. Adv. Packag., vol. 29, no. 3, pp. 403–408, Aug. 2006.
    [18] S. J. Chang, S. C. Wei, Y. K. Su, R. W. Chuang, S. M. Chen, and Li, “Nitride-based LEDs with MQW active regions grown by different temperature profiles,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1806–1808, Sep. 2005.
    [19] S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei, and H. M. Lo, “Nitride-based flip-chip ITO LEDs,” IEEE Trans. Adv. Packag., vol. 28, no. 2, pp. 273–277, May 2005.
    [20] S. J. Chang, C. H. Chen, P. C. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, H. Hung, C. M. Wang, and B. R. Huang, “Nitride-based LEDs with p-InGaN capping layer,” IEEE Trans. Electron. Devices, vol. 50, no. 12, pp. 2567–2570, Dec. 2003.
    [21] J. E. Barth, K. Verhaege, L. G. Henry, and J. Richner, “TLP calibration, correlation, standards, and new techniques,” IEEE Trans. Electron. Packag. Manuf., vol. 24, no. 2, pp. 99–108, Apr. 2001.

    CHAPTER 6 REFERENCES:
    [1] Amitava Chatterjee et al., “A Low-Voltage Triggering SCR for On-Chip ESD Protection at Output and Input Pads”, IEEE Electron Device Letter, Vol. 12, No. 1, 1991.
    [2] M. D. Ker, “ESD Protection for CMOS Output Buffer by Using Modified LVTSCR Devices with High Trigger Current”, IEEE JSSC, Vol. 32, No. 8, 19975.
    [3] S. M. Sze “Physics of Semiconductor Devices” 1981, John Wiley & Sons, Inc.
    [4] M. D. Ker et al, “Capacitor-Couple ESD Protection Circuit for Deep Submicron Low-Voltage CMOS ASIC”, IEEE Trans.on VLSIl systems, Vol. 4, No. 3, Sep. 1996
    [5] T. Y. Chen, M. D. Ker et al.,” Investigation of the Gate-Driven Effect and Substrate-Triggered Effect on ESD Robustness of CMOS Devices”, IEEE TDMR, Vol. 1, No. 4, 2002
    [6] M. D Ker et al., “Hardware/firmware co-design in an 8bits microcontroller to solve the system-level ESD issue on keyboard”, in Proc. EOS/ESD Symp., 1999, pp. 352-360.
    [7] E. Chwastek, “A new method for assessing the susceptibility of CMOS integrated circuits to latch-up: The system-transient technique”, in Proc. EOS/ESD Symp., 1989, pp. 149-155.
    [8] R. Lewis et al., “Simulation of a system level transient-induced latchup event”, in Proc. EOS/ESD symp., 1994, pp. 193-199.

    CHAPTER 7 REFERENCES:
    [1] “The trends and analysis of GaN UV detector”, Photonics History and Technology Development Association, Taiwan 2002.
    [2] “Global Solar UV Index A Practical Guide”, World Health Organization 2002.
    [3] E. Monroy, E. Muňoz, F. J. Sánchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J. A. Muňoz and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications”, Semicond. Sci. Technol., Vol. 13, No. 9, pp. 1042–1046, 1998
    [4] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç¸ G. Smith, M. Estes, B. Goldenberg, W. Yang and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures”, Appl. Phys. Lett., Vol. 71, No. 15, pp. 2154-2156, 1997
    [5] N. Biyikli, I. Kimukin, O. Aytur and E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity”, IEEE Photon. Technol. Lett., Vol. 16, No. 7, pp. 1718-1720, 2004
    [6] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry”, Appl. Phys. Lett., Vol. 80, No. 3, pp. 347-349, 2002
    [7] T. Palacios, E. Monroy, F. Calle and F. Omnès, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors”, Appl. Phys. Lett., Vol. 81, No. 10, pp. 1902-1904, 2002
    [8] J. Li, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, “Picosecond response of gallium-nitride metal-semiconductor-metal photodetectors”, Appl. Phys. Lett., Vol. 84, No. 12, pp. 2091-2093, 2004
    [9] S. Yagi, “Portable Information Device”, United States Patent, No. US 2001/0048081 A1
    [10] M. Shin and A. K. Jain, North, “Device And Method For Ultraviolet Radiation Monitoring”, United States Patent, No. US 2003/0150998 A1
    [11] S. J. Chang, T. K. Ko, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai,Y. C. Lin, W. S. Chen and C. F. Shen, “GaN-based p-i-n sensors with ITO contacts”, IEEE Sensors Journal,2005
    [12] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu and C. T. Lee, "Nitride-based LEDs with 800oC-grown p-AlInGaN/GaN double cap layers", IEEE Photon. Technol. Lett., Vol. 16, pp. 1447-1449, 2004.
    [13] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu and S. C. Chen, "Improved ESD protection by combining InGaN/GaN MQW LED with GaN Schottky diode", IEEE Electron. Dev. Lett., Vol. 24, pp. 129-131, 2003
    [14] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, "400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 744-748, 2002
    [15] S. J. Chang, S. C. Wei, Y. K. Su, R. W. Chuang, S. M. Chen and Li, "Nitride-based LEDs with MQW active regions grown by different temperature profiles", IEEE Photon. Technol. Lett., Vol. 17, pp. 1806-1808, 2005
    [16] L. S. Yeh, M. L. Lee, J. K. Sheu, M. G. Chen, C. J. Kao, G. C. Chi, S. J. Chang Y. K. Su, ”Visible-blind p-i-n photodiodes with an Al0.12Ga0.88N/GaN superlattice structure,” Solid-State Electron., Vol. 47, pp. 873-878, 2003
    [17] “Internation al Standard Global Solar UV Index”, Standard CIE S 013/E, 2003
    [18] ICNIRP(1995), Global Solar UV Index, A joint recommendation of WHO, WMO, UNEP and ICNIRP, ICNIRP-1/95, ISBN 3-9804789-0-4
    [19] P. R. Gray and R. G. Meyer, “Analysis and Design of Analog Integrated Circuits”, John Wiley & Sons, Inc.

    APPENDIX REFERENCES:

    [1] A. Z. Wang et al., “On-chip ESD protection design for integrated circuits: an overview for IC designers”, Microelectronics Journal No 32, 2001, pp.733-747.
    [2] T. J. Maloney, “Designing power supply clamps for electrostatic discharge protection of integrated circuits”, Microelectronics Reliability No 38, 1998, pp.1691-1703.

    下載圖示 校內:2013-01-29公開
    校外:2013-01-29公開
    QR CODE