| 研究生: |
徐明琰 Xu, Ming-Yan |
|---|---|
| 論文名稱: |
應用於面板內傳輸介面之可適性等化器 Adaptive Equalizers for Intra-panel Interface |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 可適性等化器 、連續時間線性之等化器 、決策回授之等化器 、計數式自適應 |
| 外文關鍵詞: | adaptive equalizer, continuous-time linear equalizer (CTLE), decision feedback equalizer (DFE), counter-based adaption |
| 相關次數: | 點閱:68 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文由兩個部分所組成,第一部分實現了一個應用於面板內傳輸介面且具有較寬輸入共模範圍的可適性等化器。此部分提出了一種連續時間線性之等化器,在1.8-V的操作電壓下,其能夠在0.3 V至1.2 V的輸入共模範圍內操作,並且不會降低高頻增益和輸入擺幅。此可適性等化器使用台積電180奈米CMOS製程進行設計與驗證,在經過1.4公尺的FR4通道,輸入資料為1.0-Gb/s和3.4-Gb/s的PRBS7訊號時,測量結果顯示抖動的峰對峰值分別為0.1 UI和0.32 UI。此次晶片的功率消耗與核心電路面積為29.4 mW 和0.185 mm^2。
第二部分實現了一個應用於次世代8K顯示器操作於5-Gb/s之計數式可適性等化器。此部分提出了一種分析方式,從高效節能的角度來決定連續時間線性等化器的奈奎斯特頻率以及決策回授等化器的階數(number of taps)。除此之外,採用計數式自適應方法來回授調整連續時間線性等化器的補償檔位以及決策回授等化器中各階的係數。調整完畢後,採用時脈閘控的方式來關閉自適應邏輯電路的運作藉此來降低功耗。此晶片以台積電 180 奈米CMOS製程製造,其核心電路面積為 0.32 mm^2。透過布局後模擬的驗證,在通道衰減為 -22.3 dB @ 2.5 GHz 與資料速度為5-Gb/s(資料序列為 PRBS7)下,輸出峰對峰的抖動為0.04 UI。並且,在工作電壓為 1.8 V下,功率消耗為 17.8 mW,達到的能源效率為3.56 pJ/b。
The thesis consists of two parts. The first part presents an adaptive equalizer with a wide input common mode range (ICMR) for the intra-panel interface. A continuous-time linear equalizer (CTLE) is proposed to operate with an ICMR from 0.3 V to 1.2 V under 1.8-V supply voltage without degrading the high-frequency boosting gain and input swing. The design and fabrication of this work were accomplished using the TSMC 180-nm CMOS process. The measurement results show that the peak-to-peak jitters of the equalized data are 0.1 UI and 0.32 UI at 1.0-Gb/s and 3.4-Gb/s data rate, respectively, by a PRBS7 pattern through a 1.4 meters FR4 channel. The power consumption and core area of this chip are 29.4 mW and 0.185 mm^2, respectively.
The second part presents a 5-Gb/s counter-based adaptive equalizer for next-generation 8K displays. This part proposes a systematic analysis method to determine the Nyquist frequency of the CTLE and the number of taps in the decision feedback equalizer (DFE) for pursuing a better energy-efficiency. In addition, a counter-based adaption method is adopted to adjust the compensation gain in the CTLE and the tap coefficients in the DFE. At the end of the adjustment process, the adaption logic circuit is turned off by clock gating to reduce power consumption. The chip is fabricated in TSMC 180-nm CMOS process with a core area of 0.32 mm^2. Post-layout simulation shows that, giving a 5-Gb/s PRBS7 input data, the output peak-to-peak jitter is 0.04 UI with a channel loss of -22.3 dB at 2.5 GHz. This test chip consumes 17.8 mW under a 1.8 V supply voltage, and the energy efficiency is 3.56 pJ/b.
[1] H. K. Jeon et al., “A Clock-Embedded Differential Signaling (CEDS) for the Next Generation TV Applications,” SID Symp. Dig. Tech. Pap. 40, no. 1, pp. 975–978, June 2009.
[2] K. Yamaguchi, Y. Hori, K.Nakajima, K. Suzuki, M. Mizuno, and H. Hayama, “A 2.0Gb/s clock-embedded interface for Full-HD 10-bit 120Hz LCD drivers with 1/5-rate noise-tolerant phase and frequency recovery,” IEEE J. Solid- State Circuits, vol. 4, no. 2, pp. 3560-3567, Dec. 2009.
[3] H. K. Joen, Y. H. Moon, J. K. Kang, and L. S. Kim, “An intra-panel interface with clock-embedded differential signaling for TFT-LCD systems,” IEEE J. Display Tech, vol. 7, no. 10, pp.562-571, Oct. 2011.
[4] T. Wang et al., “A 5.2 Gb/s Receiver for Next-Generation 8K Displays in 180 nm CMOS Process,” IEEE J. Solid- State Circuits, vol. 57, no. 8, pp. 2521-2531, Aug. 2022.
[5] B. Razavi, “Design of Integrated Circuits for Optical Communications,” McGraw-Hill, 2003.
[6] J. Lee, M.-S. Chen and H.-D. Wang, “Design and Comparison of Three 20-Gb/s Backplane Transceivers for Duobinary, PAM4, and NRZ Data,” IEEE J. Solid- State Circuits, vol. 43, no. 9, pp. 2120-2133, Sept. 2008.
[7] A. Lender, “The duobinary technique for high-speed data transmission,” IEEE Trans. Commun. Electron, vol. 82, pp. 214–218, May. 1963.
[8] K. Yamaguchi et al., “12 Gb/s duobinary signaling with x2 oversampled edge equalization,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, 2005, pp. 70–71, Feb. 2005.
[9] F. Herzel and B. Razavi, “A study of oscillator jitter due to supply and substrate noise,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, no. 1, pp. 56-62, Jan. 1999.
[10] N. Da Dalt, A. Sheikholeslami, “Understanding Jitter and Phase Noise: A Circuits and Systems Perspective,” Cambridge: Cambridge University Press, 2018.
[11] S. Gondi and B. Razavi, “Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers,” IEEE J. Solid- State Circuits, vol. 42, no. 9, pp. 1999-2011, Sept. 2007.
[12] B. Kim, Y. Liu, T. O. Dickson, J. F. Bulzacchelli and D. J. Friedman, “A 10-Gb/s Compact Low-Power Serial I/O With DFE-IIR Equalization in 65-nm CMOS,” IEEE J. Solid- State Circuits, vol. 44, no. 12, pp. 3526-3538, Dec. 2009.
[13] Jri Lee, “Communication Integrated Circuits.” [Online]. Available: http://cc.ee.ntu.edu.tw/~jrilee/publications/Comm_IC.pdf .
[14] J. W. Jung and B. Razavi, “A 25 Gb/s 5.8 mW CMOS Equalizer,” IEEE J. Solid- State Circuits, vol. 50, no. 2, pp. 515-526, Feb. 2015.
[15] J. E. Proesel and T. O. Dickson, “A 20-Gb/s, 0.66-pJ/bit serial receiver with 2-stage continuous-time linear equalizer and 1-tap decision feedback equalizer in 45nm SOI CMOS,” IEEE Symposium on VLSI Circuits Digest of Technical Papers, Kyoto, Japan, 2011, pp. 206-207.
[16] S. Ibrahim and B. Razavi, “Low-Power CMOS Equalizer Design for 20-Gb/s Systems,” IEEE J. Solid- State Circuits, vol. 46, no. 6, pp. 1321-1336, June 2011.
[17] Jri Lee, “A 20Gb/s Adaptive Equalizer in 0.13-m CMOS Technology,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2006, pp. 273-282.
[18] S. Galal and B. Razavi, “10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology,” IEEE J. Solid- State Circuits, vol. 38, no. 12, pp. 2138-2146, Dec. 2003.
[19] A. Garg, A. C. Carusone and S. P. Voinigescu, “A 1-Tap 40-Gb/s Look-Ahead Decision Feedback Equalizer in 0.18-m SiGe BiCMOS Technology,” IEEE J. Solid- State Circuits, vol. 41, no. 10, pp. 2224-2232, Oct. 2006.
[20] B. Kim, Y. Liu, T. O. Dickson, J. F. Bulzacchelli and D. J. Friedman, “A 10-Gb/s Compact Low-Power Serial I/O With DFE-IIR Equalization in 65-nm CMOS,” IEEE J. Solid- State Circuits, vol. 44, no. 12, pp. 3526-3538, Dec. 2009.
[21] M. Park, J. Bulzacchelli, M. Beakes and D. Friedman, “A 7Gb/s 9.3mW 2-Tap Current-Integrating DFE Receiver,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2007, pp. 230-599.
[22] Y.-H. Tu, K.-H. Cheng, M.-J. Lee and J. -C. Liu, “A Power-Saving Adaptive Equalizer With a Digital-Controlled Self-Slope Detection,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 7, pp. 2097-2108, July 2018
[23] A. J. Baker, “An adaptive cable equalizer for serial digital video rates to 400 Mb/s,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, 1996.
[24] S.-S. Choi, M.-S. Hwang and D.-K. Jeong, “A 0.18m CMOS 3.5-Gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 419-425, March 2004.
[25] W.-Y. Lee and L.-S. Kim, “An Adaptive Equalizer With the Capacitance Multiplication for DisplayPort Main Link in 0.18-m CMOS,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 5, pp. 964-968, May 2012.
[26] B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson Jr., “Stationary and nonstationary learning characteristics of the LMS adaptive filter,” Proc. IEEE, vol. 64, no. 8, pp. 1151–1162, Aug. 1976.
[27] H.-J. Chi et al., “A Single-Loop SS-LMS Algorithm With Single-Ended Integrating DFE Receiver for Multi-Drop DRAM Interface,” IEEE J. Solid- State Circuits, vol. 46, no. 9, pp. 2053-2063, Sept. 2011.
[28] V. Stojanovic et al., “Autonomous dual-mode (PAM2/4) serial link transceiver with adaptive equalization and data recovery,” IEEE J. Solid- State Circuits, vol. 40, no. 4, pp. 1012-1026, April 2005.
[29] K. Park et al., “A 55.1 mW 1.62-to-8.1 Gb/s Video Interface Receiver Generating up to 680 MHz Stream Clock Over 20 dB Loss Channel,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 12, pp. 1432-1436, Dec. 2017.
[30] J. Lee, K. Park, K. Lee and D. Jeong, “A 2.44-pJ/b 1.62–10-Gb/s Receiver for Next Generation Video Interface Equalizing 23-dB Loss With Adaptive 2-Tap Data DFE and 1-Tap Edge DFE,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1295-1299, Oct. 2018.
[31] Y. Choi et al., “A 0.99-pJ/b 15-Gb/s Counter-Based Adaptive Equalizer Using Single Comparator in 28-nm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 10, pp. 3189-3193, Oct. 2021.
[32] J. Lee, K. Lee, H. Kim, B. Kim, K. Park and D. Jeong, “A 0.1-pJ/b/dB 1.62-to-10.8-Gb/s Video Interface Receiver With Jointly Adaptive CTLE and DFE Using Biased Data-Level Reference,” IEEE J. Solid- State Circuits, vol. 55, no. 8, pp. 2186-2195, Aug. 2020.
[33] Y. Kim, Y. Kim, T. Lee and L. Kim, “A 21-Gbit/s 1.63-pJ/bit Adaptive CTLE and One-Tap DFE With Single Loop Spectrum Balancing Method,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 2, pp. 789-793, Feb. 2016.
[34] M.-S. Li, Y.-C. Lin, C.-C. Liu, C.-R. Chang, J.-Y. Li, Y.-S. Lin, C.-Y. Y., “A 3-Gb/s Equalizer with an Adaptive Swing Controller for TFT-LCD Interfaces,” JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 19(1), 1-7. (2019).
[35] T. Musah et al., “A 4–32 Gb/s bidirectional link with 3-tap FFE/6-tap DFE and collaborative CDR in 22 nm CMOS,” IEEE J. Solid-State Circuits, Dec. 2014.
[36] M. Hossain and A. C. Carusone, “A 14-Gb/s 32 mW AC coupled receiver in 90-nm CMOS,” IEEE Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2007, pp. 32–33.
[37] M. Hekmat et al., “A 6 Gb/s 3-tap FFE transmitter and 5-tap DFE receiver in 65 nm/0.18 μm CMOS for next-generation 8K displays,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, Jan. 2016, pp. 402–403
[38] W.-S. Kim, C. Seong, and W.-Y. Choi, “A 5.4-Gbit/s adaptive continuous-time linear equalizer using asynchronous undersampling histograms,” IEEE Trans. Circuits Syst. II, Express Briefs, Sep. 2012.
[39] Liu et al., “A 5-Gb/s serial-link redriver with adaptive equalizer and transmitter swing enhancement,” IEEE Trans. Circuits Syst. I, Reg. Papers, Apr. 2014.
[40] S. Hwang, J. Song, Y. Lee, C. Kim, “A 1.62–5.4- Gb/s receiver for display port version 1.2a with adaptive equalization and referenceless frequency acquisition techniques,” IEEE Trans. Circuits Syst. I, Reg. Papers, Oct. 2017.
[41] H. Chen, G. Guo, Q. Lai, J. Zhang, J. Han, Y. Yan, “0.3-4.4 GHz wideband CMOS frequency divide-by-1.5 with optimized CML-XOR gate,” IEICE Electronics Express, 2017.
[42] Y.-M. Ying and S.-I. Liu, “A 20Gb/s digitally adaptive equalizer/DFE with blind sampling,” IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2011.
[43] Y.-H. Kim, Y.-J Kim, T.-H. Lee, and L.-S. Kim, “A 11.5 Gb/s 1/4th baud-rate CTLE and two-tap DFE with boosted high frequency gain in 110-nm CMOS,” IEEE Transactions On Very Large Scale Integration (VLSI) Systems, Mar. 2015.
[44] D. Kim, W.-S. Choi, A. Elkholy, J. Kenney and P. K. Hanumolu, “A 15-Gb/s Sub-Baud-Rate Digital CDR,” IEEE J. Solid-State Circuits, vol. 54, no. 3, pp. 685-695, March 2019.
[45] K. Lee et al., “An Adaptive Offset Cancellation Scheme and Shared-Summer Adaptive DFE for 0.068 pJ/b/dB 1.62-to-10 Gb/s Low-Power Receiver in 40 nm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 2, pp. 622-626, Feb. 2021.