簡易檢索 / 詳目顯示

研究生: 陳智勇
Chen, Jhih-Yong
論文名稱: 高Q微波介電材料之開發及應用
Development and Applications of High Q Microwave Dielectric Materials
指導教授: 黃正亮
Huang, Cheng-Liang
共同指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 212
中文關鍵詞: 高Q微波介電材料
外文關鍵詞: High Q, Microwave Dielectric Materials
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微波介電共振器由具有高介電常數、高品質因素及良好的溫度穩定係數等特性,適合應用於天線、濾波器、震盪器和雙工器。近年來,由於微波通訊系統的快速發展,微型化和高效能已經成為微波元件的兩大主要需求。因此,高品質因素的介電材料常被使用在通訊系統中,並使用設計於高效能微波元件上。同時,將介電材料積體化亦是實現微波元件微型化的方法之一。此外,對於高頻通訊元件而言,降低燒結溫度也成為發展微波介電材料之重要趨勢。針對以上所述,本論文將以五個部分加以探討及研究:

    一、高品質因數微波介電材料之開發
    [a]鈦酸鎂陶瓷之研究:
    (1)鈦酸鎂(Mg2TiO4)介電陶瓷擁有 ~ 14,Q×f ~ 150,000 GHz,τf ~ –50 ppm/°C的微波介電特性,其具有高品質因數及低成本的特色;因此,在微波通訊系統的應用上(例如:全球衛星定位系統,無線射頻辨識系統,無線區域網路等等),鈦酸鎂介電陶瓷是非常受到歡迎的介電材料。在本論文中,嘗試著開發具有更高Q值的尖晶石系統,分別利用Co部分取代Mg原子及Sn部分取代Ti原子,可得到具有更佳微波介電特性的(Mg0.95Co0.05)2TiO4 (Q×f ~ 286,000 GHz)及Mg2(Ti0.95Sn0.05)O4 (Q×f ~ 318,000 GHz)。
    (2)(Mg0.95Co0.05)2TiO4及Mg2(Ti0.95Sn0.05)O4雖有極佳的Q×f值,但其共振頻率溫度飄移係數仍為負值,無法有效的運用於微波元件上;因此,予以加入具有正溫度飄移係數的陶瓷材料(例如:CaTiO3,Ca0.61Nd0.26TiO3,Ca0.6La0.8/3TiO3,Ca0.8Sm0.4/3TiO3,Ca0.8Sr0.2TiO3),以獲得具有高溫度穩定性的微波陶瓷材料。
    (3)此外,採固態燒結法製備的(Mg0.95Co0.05)2TiO4–Ca0.8Sr0.2TiO3具有極佳的微波介電特性( ~ 19.22,Q×f ~ 123,200 GHz,τf ~ 2.8 ppm/°C);但其燒結溫度高達1300°C,侷限其在工業上的應用價值,為了有效降低燒結溫度,嘗試在(Mg0.95Co0.05)2TiO4–Ca0.8Sr0.2TiO3陶瓷材料中加入燒結促進劑(B2O3)以達到液相燒結的目的。針對上述研究,並使用XRD及SEM來加以鑑定及分析。

    [b]鈮酸鋅及鉭酸鋅陶瓷之研究:
    (1)鈮酸鋅(ZnNb2O6)介電陶瓷擁有 ~ 23.3,Q×f ~ 83,600 GHz,τf ~ –75.2 ppm/°C的微波介電特性,其具有高品質因數及低燒結溫度的特色;因此,被廣泛應用於微波通訊系統中。在本論文中,嘗試著開發具有更高Q值的鈳鐵礦系統,利用Ta部分取代Nb原子,可得到具有更佳微波介電特性的Zn(Nb0.95Ta0.05)2O6 (Q×f ~ 152,000 GHz),以利於更高頻微波元件之運用。
    (2)鉭酸鋅(ZnTa2O6)介電陶瓷擁有 ~ 37.64,Q×f ~ 63,700 GHz,τf ~ 8.8 ppm/°C的微波介電特性,其具有高介電常數及高溫度穩定性的特色,能有效運用於高頻通訊元件上(例如:GPS天線,WLAN濾波器等等)。在本論文中,嘗試著開發具有更高Q值的Tri-αPbO2系統,分別利用Co,Mn,Mg,Ni部分取代Zn原子及Nb部分取代Ta原子,可得具有更佳微波介電特性的(Zn0.95Co0.05)Ta2O6 (Q×f ~ 112,000 GHz)及Zn(Ta0.95Nb0.05)2O6 (Q×f ~ 86,000 GHz),以利於更高頻微波通訊元件之運用。針對上述研究,並使用XRD,EDX,SEM及HR-TEM來加以鑑定及分析。

    二、高介電常數微波材料之研究
    La(Mg0.5Ti0.5)O3介電陶瓷擁有 ~ 29,Q×f ~ 75,500 GHz,τf ~ –65 ppm/°C的微波介電特性,其具有高介電常數、高品質因數及低成本的特色;然而,其共振頻率溫度飄移係數為負值及燒結溫度過高(1600°C)等缺點,無法有效的運用於微波元件上;因此,予以加入具有正溫度飄移係數的陶瓷材料(例如:Ca0.8Sm0.4/3TiO3,Ca0.8Sr0.2TiO3),這樣不但降低其燒結溫度,並同時獲得具有更高介電常數及高溫度穩定性的微波陶瓷材料0.5La(Mg0.5Ti0.5)O3–0.5Ca0.8Sr0.2TiO3 ( ~ 47.12,Q×f ~ 35,000 GHz,τf ~ –4.7 ppm/°C)。針對上述研究,並使用XRD及SEM來加以鑑定及分析。

    三、低溫共燒(LTCC)微波介電材料之研究
    Zn(Nb0.95Ta0.05)2O6介電陶瓷擁有 ~ 24.57,Q×f ~ 152,000 GHz,τf ~ –71.1 ppm/°C的優良微波介電特性。同時,為使介電材料積體化以達到微波元件縮小化的目標,可經由添加燒結促進劑CuO促使材料緻密化及降低燒結溫度,並探討液相對其微波特性與燒結行為之影響。由實驗結果得知,當添加4.5 wt%的CuO於Zn(Nb0.95Ta0.05)2O6陶瓷材料中,並於930°C持溫2小時下,具有最佳微波介電特性( ~ 22.87,Q×f ~ 77,200 GHz,τf ~ –70.8 ppm/°C)。與原來未添加燒結促進劑的材料燒結溫度(1175°C)比較,可大幅降低燒結溫度達245°C。期盼能有效運用於低溫共燒陶瓷製程(LTCC),並適合於衛星定衛天線基板之使用。

    四、低損耗Mg4Ta2O9介電薄膜之製備及其特性之研究
    薄膜技術已經成為今日積體電路的主要技術,因而開發具有低漏電流的介電薄膜就變得非常重要。由於Mg4Ta2O9介電陶瓷擁有低損耗(Q×f ~ 347,000 GHz)的微波介電特性;故本論文中,嘗試著運用射頻磁控濺鍍系統將Mg4Ta2O9介電材料予以薄膜化,並在不同製程參數下,製備出具有高品質之介電薄膜,並進行物理及電性特性之分析。

    五、微帶線帶通濾波器之設計與製作
    以第一部份完成之高Q 微波介電材料(0.92(Mg0.95Co0.05)2TiO4–0.08Ca0.8Sr0.2TiO3 (0.5 wt% B2O3))為基板,設計一個適用於微波通訊系統上的微帶線帶通濾波器,其中包含元件設計觀念、製程條件及量測分析,並將自行研製的濾波器予以實踐在自製基板上,完成了由材料開發到元件設計的實際應用。

    Microwave dielectric resonators (DRs) which are fabricated by high dielectric constant, high quality factor, and good temperature stability of microwave dielectric materials are suitably applied in antennas, filters, oscillators, and diplexers. Recently, with the rapidly progress in the microwave communication systems, miniaturization and performance enhancement have become two main requirements of the microwave devices. Therefore, high quality factor dielectric materials can be utilized in designing high-performance microwave devices in communication system. Moreover, the integration of dielectric materials is also main method to carry out the miniaturization of microwave devices. In addition, to develop microwave dielectric materials, lower sintering temperatures plays an important role in the future. As mentioned above, the main study of this dissertation is divided five parts which preparation of high dielectric constant, high quality factor, low sintering temperature microwave dielectric materials, fabrication of high quality Mg4Ta2O9 dielectric thin films and their applications on microstrip bandpass filters.

    1.Development of High Q Microwave Dielectric Materials
    [a]Study of Mg2TiO4 Ceramics:
    (1)Binary titanate ceramic Mg2TiO4 ( ~ 14, Q×f ~ 150,000 GHz, and τf ~ –50 ppm/°C), having extremely high quality factor, were reported as promising dielectric ceramics for microwave applications. Their low cost even brought much more attention. In fact, they have already been used as dielectric materials for GPS antennas and wireless LAN filters. Therefore, the spinel-structured Mg2TiO4 is worthy to investigate its microwave properties. In this dissertation, with partial replacement of Mg by Co or Ti by Sn, the Q×f of the dielectrics (Mg0.95Co0.05)2TiO4 ( ~ 15.7, Q×f ~ 286,000 GHz, and τf ~ –52.5 ppm/°C) and Mg2(Ti0.95Sn0.05)O4 ( ~ 15.57, Q×f ~ 318,000 GHz, and τf ~ –45.1 ppm/°C) can be easily boosted to a value higher than 250,000 GHz and retain compatible and τf.
    (2)In order to achieve temperature-stable materials, CaTiO3, Ca0.61Nd0.26TiO3, Ca0.6La0.8/3TiO3, Ca0.8Sm0.4/3TiO3, and Ca0.8Sr0.2TiO3 were added to (Mg0.95Co0.05)2TiO4 and Mg2(Ti0.95Sn0.05)O4 ceramics, respectively. Addition of compensators, having much smaller grain sizes in comparison with that of (Mg0.95Co0.05)2TiO4 and Mg2(Ti0.95Sn0.05)O4, could effectively hold back abnormal grain growth in the (Mg0.95Co0.05)2TiO4 and Mg2(Ti0.95Sn0.05)O4 matrixes. Hence, using the compensators can effectively lower the sintering temperature of the ceramic bulks. Dielectric characteristics and sintering behavior of these ceramic systems were investigated. A two-phase system, which was confirmed by the XRD patterns and the EDX analysis. Moreover, the microstructures of the sintered bulks were characterized by SEM.
    (3)As mentioned above, the optimal microwave dielectric properties are achieved in 0.92(Mg0.95Co0.05)2TiO4–0.08Ca0.8Sr0.2TiO3 ceramics sintered at 1300°C for 4 h with a dielectric constant ( ) value of 19.22, a quality factor (Q×f) value of 123,200 GHz, and a temperature coefficient of resonant frequency (τf) value of 2.8 ppm/°C. Furthermore, in order to lower the sintering temperature, sintering aid such as B2O3 was used to produce the liquid phase that degrades the sintering temperatures. The microstructures and the microwave dielectric properties with B2O3 additions were investigated.

    [b] Study of ZnX2O6 (X = Nb and Ta) Ceramics:
    (1)Partial Replacement of ZnNb2O6 Ceramics
    The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this dissertation. The forming of Zn(Nb1-xTax)2O6 (x = 0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. A fine combination of microwave dielectric properties ( ~ 24.57, Q×f ~ 152,000 GHz, and τf ~ –71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.
    (2)Partial Replacement of ZnTa2O6 Ceramics
    ZnTa2O6 microwave dielectric materials have been developed as the microwave dielectric resonators in the past, because the dielectric resonators fabricated by ZnTa2O6 ceramics reveal the excellent microwave dielectric properties. However, the quality factor of ZnTa2O6 ceramic is still not good enough for the applications at the microwave frequency. In order to improve the microwave dielectric properties, with the partial replacement of ZnTa2O6 ceramics were investigated. The forming of (Zn0.95M2+0.05)Ta2O6 (M2+ = Co, Mn, Mg, and Ni) and Zn(Ta0.95Nb0.05)2O6 solid solutions were confirmed by the XRD patterns, HR-TEM lattice images, and the EDS analysis.

    2.Research of High K Microwave Dielectric Materials
    Several complex perovskites ceramics A(B2+0.5B4+0.5)O3 (where A = La, Nd, and Sm; B2+ = Mg, Zn, and Co; B4+ = Ti and Sn) have been reported due to their excellent microwave dielectric properties. Among them, La(Mg0.5Ti0.5)O3 has a high dielectric constant ( ~ 29), a high quality factor (Q×f value ~ 75,500 GHz), and a large negative temperature coefficient of resonant frequency (τf ~ –65 ppm/°C). In order to compensate the negative τf of the La(Mg0.5Ti0.5)O3 ceramics, Ca0.8Sm0.4/3TiO3 and Ca0.8Sr0.2TiO3 perovskite which have positive τf had been added. The experiment result showed that 0.5La(Mg0.5Ti0.5)O3–0.5Ca0.8Sr0.2TiO3 have the best microwave dielectric properties, it’s ~ 47.12, Q×f ~ 35,000 GHz, and τf ~ –4.7 ppm/°C. In addition, the X-ray diffraction (XRD) patterning and scanning electron microscopy (SEM) analysis were also employed to study the crystal structures and microstructures of the ceramics.

    3.Investigation of Low-Temperature Sintering Microwave Dielectrics Using CuO-Doped Zn(Nb0.95Ta0.05)2O6 Ceramics
    The influence of CuO additions on the sintering behavior and microwave dielectric properties of Zn(Nb0.95Ta0.05)2O6 ceramic and its chemical compatibility with Ag have been investigated. The CuO additions not only effectively lower the sintering temperature of Zn(Nb0.95Ta0.05)2O6 ceramics to 930°C, the optimized sintering temperatures also decrease with increasing CuO contents due to the liquid phase effect. The Q×f value is a function of the sintering temperature and the amount of CuO addition. With 4.5 wt% CuO addition, it varies from 8,500 to 77,200 GHz as the sintering temperature increases from 840°C to 930°C for 2 h. For low-firing multilayer applications, a combination of dielectric properties with an ~ 22.87, a Q×f ~ 77,200 GHz, and a τf ~ –70.8 ppm/°C can be achieved for 4.5 wt% CuO-doped Zn(Nb0.95Ta0.05)2O6 ceramic sintered at 930°C for 2 h.

    4.Fabrication and Characteristics of Mg4Ta2O9 Dielectric Thin Films by RF Magnetron Sputtering
    Recently, high permittivity dielectric films with low leakage current and high break-down voltage are of the great importance for a variety of integrated devices, such as storage capacitors in dynamic random access memory (DRAM). In this dissertation, the Mg4Ta2O9 target was prepared and used for deposition. The crystal structure and surface morphology of the films affected by deposition conditions, such as RF power and sputtering time. The physical and electrical characteristics of the thin films were investigated.

    5.Design and Fabrication of Microstrip Bandpass Filters
    The microstrip bandpass filters of SIR with a (skew-symmetric) feed structure and open-stubs are presented. In this dissertation, using high permittivity ceramic substrates to miniaturize the sizes of Butterworth bandpass filters are investigated. The selectivity and stopband rejction of the designed filters can be improved significantly by utilizing the feed structure and open-stubs. The responses of the bandpass filters using Al2O3 ( = 9.8, = 0.0005, 1.6-mm thickness), and 0.92(Mg0.95Co0.05)2TiO4–0.08Ca0.8Sr0.2TiO3 with 0.5 wt% B2O3 addition ( = 18.07, = 0.0001, 1.6-mm thickness) ceramic substrates are designed at a center frequency of 2.4 GHz. The compact size and high-performance of the filter are presented in this thesis.

    Abstract I Contents X Table Captions XIV Figure Captions XVII Chapter 1 Introduction 1 Chapter 2 Theory 8 2-1 Theory of Microwave Dielectric Properties 8 2-2 Measurement of Dielectric Resonator 10 2-3 Thin Film 11 2-3-1 Surface Morphology of Thin Film 11 2-3-2 I–V Characteristic of Thin Film 12 2-3-3 C–V Characteristic of Thin Film 14 2-4 Basic Theory of Microwave Filter 16 Chapter 3 Development of High Q Microwave Dielectric Materials 19 3-1 Mg2TiO4 Ceramics 19 3-1-1 Introduction 19 3-1-2 Experimental Procedures 20 3-1-3 Results and Discussion 22 3-1-3-1 Partial Replacement of Mg2+ by Co2+ in Mg2TiO4 Ceramics 22 3-1-3-2 The Compensation of τf in (Mg0.95Co0.05)2TiO4 Ceramics 25 3-1-3-2-1 (1–x)(Mg0.95Co0.05)2TiO4–xCa0.61Nd0.26TiO3 Ceramic System 25 3-1-3-2-2 (1–x)(Mg0.95Co0.05)2TiO4–xCa0.6La0.8/3TiO3 Ceramic System 28 3-1-3-2-3 (1–x)(Mg0.95Co0.05)2TiO4–xCa0.8Sm0.4/3TiO3 Ceramic System 30 3-1-3-2-4 (1–x)(Mg0.95Co0.05)2TiO4–xCa0.8Sr0.2TiO3 Ceramic System 34 3-1-3-3 Low Temperature Sintering and Microwave Dielectric Properties of 0.92(Mg0.95Co0.05)2TiO4–0.08Ca0.8Sr0.2TiO3 Ceramics Using B2O3 Additions 36 3-1-3-4 Partial Replacement of Ti4+ by Sn4+ in Mg2TiO4 Ceramics 39 3-1-3-5 The Compensation of τf in Mg2(Ti0.95Sn0.05)O4 Ceramics 43 3-2 ZnX2O6 (X = Nb and Ta) Ceramics 46 3-2-1 Introduction 46 3-2-2 Experimental Procedures 48 3-2-3 Results and Discussion 50 3-2-3-1 Partial Replacement of Nb5+ by Ta5+ in ZnNb2O6 Ceramics 50 3-2-3-2 Partial Replacement of Zn2+ by M2+ (M2+ = Co, Mn, Mg, and Ni) in ZnTa2O6 Ceramics 51 3-2-3-3 Partial Replacement of Ta5+ by Nb5+ in ZnTa2O6 Ceramics 57 Chapter 4 Research of High Dielectric Constant Microwave Dielectric Materials 60 4-1 Introduction 60 4-2 Experimental Procedures 61 4-3 Results and Discussion 62 4-3-1 (1–x)La(Mg0.5Ti0.5)O3–xCa0.8Sm0.4/3TiO3 Ceramic System 62 4-3-2 (1–x)La(Mg0.5Ti0.5)O3–xCa0.8Sr0.2TiO3 Ceramic System 64 Chapter 5 Investigation of Low-Temperature Sintering Microwave Dielectrics Using CuO-Doped Zn(Nb0.95Ta0.05)2O6 Ceramics 68 5-1 Introduction 68 5-2 Experimental Procedures 69 5-3 Results and Discussion 70 Chapter 6 Study on Physical and Electrical Properties of the Mg4Ta2O9 Films for Metal–Insulator–Metal Capacitor Application 74 6-1 Introduction 74 6-2 Experimental Procedures 76 6-2-1 Target Fabrication 76 6-2-2 Clean Substrate 76 6-2-3 Deposition Process 77 6-2-4 Analysis of Physical Characteristics of Films 78 6-2-5 Analysis of Electrical Characteristics of Films 78 6-3 Results and Discussion 78 6-3-1 Crystal Structure of Mg4Ta2O9 Films 78 6-3-2 Microstructure and Surface Morphology of Mg4Ta2O9 Films 79 6-3-3 Electrical Characteristics Mg4Ta2O9 Films 80 Chapter 7 Using High Q Ceramic Substrates to Fabricate Bandpass Filter with Spurious Response Suppression 82 7-1 Introduction 82 7-2 Stepped Impedance Resonator (SIR) 83 7-2-1 Basic Structure of SIR 83 7-2-2 Resonance Conditions and Resonator Electrical Length 84 7-2-3 Theory of the Zero Degree Feed Structure 85 7-3 Microstrip Bandpass Filter Design 86 7-4 Simulated and Measured Results 87 Chapter 8 Conclusions and Future Works 89 8-1 Conclusions 89 8-2 Future Works 96 References 97 Tables 112 Figures 126

    [1] C. L. Huang, J. Y. Chen, and C. Y. Jiang, “Dielectric Characteristics and Sintering Behavior of Mg2TiO4–(Ca0.8Sr0.2)TiO3 Ceramic System at Microwave Frequency,” J. Alloys Compd., 487 (2009) 420–424.
    [2] Y. B. Chen, C. L. Huang, and S. T. Tasi, “New Dielectric Material System of x(Mg0.95Zn0.05)TiO3–(1–x)Ca0.8Sm0.4/3TiO3 at Microwave Frequency,” Mater. Lett., 62 (2008) 2454–2457.
    [3] I. M. Reaney and D. Iddles, “Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks,” J. Am. Ceram. Soc., 89 (2006) 2063–2072.
    [4] C. L. Huang, J. Y. Chen, and B. J. Li, “A New Dielectric Material System Using (1–x)(Mg0.95Co0.05)2TiO4–xCa0.8Sm0.4/3TiO3 at Microwave Frequencies,” Mater. Chem. Phys., 120 (2010) 217–220.
    [5] A. Kan, H. Ogawa, and H. Ohsato, “Influence of Microstructure on Microwave Dielectric Properties of ZnTa2O6 Ceramics with Low Dielectric Loss,” J. Alloys Compd., 337 (2002) 303–308.
    [6] B. Jancar, D. Suvorov, M. Valant, and G. Drazic, “Characterization of CaTiO3–NdAlO3 Dielectric Ceramics,” J. Eur. Ceram. Soc., 23 (2003) 1391–1400.
    [7] C. L. Huang, J. Y. Chen, and Y. W. Tseng, “High-Dielectric-Constant and Low-Loss Microwave Dielectric in the Ca(Mg1/3Ta2/3)O3–(Ca0.8Sr0.2)TiO3 Solid Solution System,” Mater. Sci. Eng. B, 167 (2010) 142–146.
    [8] W. W. Cho, K. I. Kakimoto, and H. Ohsato, “High-Q Microwave Dielectric SrTiO3-Doped MgTiO3 Materials with Near-Zero Temperature Coefficient of Resonant Frequency,” Jpn. J. Appl. Phys., 43 (2004) 6221–6224.
    [9] J. J. Wang, “Study of (1–x)(Mg0.6Zn0.4)0.95Co0.05TiO3–xCa0.61Nd0.26TiO3 Microwave Dielectrics,” J. Alloys Compd., 486 (2009) 423–426.
    [10] W. Lei, W. Z. Lu, J. H. Zhu, and X. H. Wang, “Microwave Dielectric Properties of ZnAl2O4–TiO2 Spinel-Based Composites,” Mater. Lett., 61 (2007) 4066–4069.
    [11] Y. Miyauchi, Y. Ohishi, S. Miyake, and H. Ohsato, “Improvement of the Dielectric Properties of Rutile-Doped Al2O3 Ceramics by Annealing Treatment,” J. Eur. Ceram. Soc., 26 (2006) 2093–2096.
    [12] H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, “Crystal Structure of Corundum Type Mg4(Nb2–xTax)O9 Microwave Dielectric Ceramics with Low Dielectric Loss,” J. Eur. Ceram. Soc., 23 (2003) 2485–2488.
    [13] A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, “High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4,” J. Am. Ceram. Soc., 89 (2006) 3441–3445.
    [14] C. L. Huang and Y. W. Tseng, “Microwave Dielectric Properties of Mg1.8Ti1.1O4 Ceramics,” Mater. Lett., 64 (2010) 885–887.
    [15] C. L. Huang, J. J. Wang, and Y. P. Chang, “Dielectric Properties of Low Loss (1–x)(Mg0.95Zn0.05)TiO3–xSrTiO3 Ceramic System at Microwave Frequency,” J. Am. Ceram. Soc., 90 (2007) 858–862.
    [16] Y. C. Chen, S. M. Tsao, C. S. Lin, S. C. Wang, and Y. H. Chien, “Microwave Dielectric Properties of 0.95MgTiO3–0.05CaTiO3 for Application in Dielectric Resonator Antenna,” J. Alloys Compd., 471 (2009) 347–351.
    [17] H. J. Lee, I. T. Kim, and K. S. Hong, “Dielectric Properties of AB2O6 Compounds at Microwave Frequencies (A = Ca, Mg, Mn, Co, Ni, Zn, and B = Nb, Ta),” Jpn. J. Appl. Phys., 36 (1997) L1318–L1320.
    [18] C. L. Huang and J. Y. Chen, “Reduced Dielectric Loss of Modified ZnNb2O6 Ceramics by Substituting Nb5+ with Ta5+,” J. Am. Ceram. Soc., 92 (2009) 1845–1848.
    [19] H. Kagata and J. Kato, “Dielectric Properties of Ca-Based Complex Perovskite at Microwave Frequencies,” Jpn. J. Appl. Phys., 33 (1994) 5463–5465.
    [20] S. Y. Cho, C. H. Kim, D. W. Kim, K. S. Hong, and J. H. Kim, “Dielectric Properties of Ln(Mg1/2Ti1/2)O3 as Substrates for High-Tc Superconductor Thin Films,” J. Mater. Res., 14 (1999) 2484–2487.
    [21] C. L. Huang and J. Y. Chen, “Synthesis, Crystal Structure, and Microwave Dielectric Properties of (Mg1–xCox)Ta2O6 Solid Solutions,” J. Am. Ceram. Soc., 93 (2010) 470–473.
    [22] M. H. Weng, T. J. Liang, and C. L. Huang, “Lowering of Sintering Temperature and Microwave Dielectric Properties of BaTi4O9 Ceramics Prepared by the Polymeric Precursor Method,” J. Eur. Ceram. Soc., 22 (2002) 1693–1698.
    [23] C. L. Huang and J. Y. Chen, “Phase Relation and Microwave Dielectric Properties of (Zn1–xCox)Ta2O6 System,” J. Am. Ceram. Soc., 93 (2010) 1248–1251.
    [24] S. I. Hirano, T. Hayashi, and A. Hattori, “Chemical Processing and Microwave Characteristics of (Zr,Sn)TiO4 Microwave Dielectrics,” J. Am. Ceram. Soc., 74 (1991) 1320–1324.
    [25] P. V. Bijumon and M. T. Sebastian, “Influence of Glass Additives on the Microwave Dielectric Properties of Ca5Nb2TiO12 Ceramics,” Mater. Sci. Eng. B, 123 (2005) 31–40.
    [26] L. Fang, H. Zhang, T. H. Huang, R. Z. Yuan, and R. Dronskowski, “Preparation, Structure and Dielectric Properties of Ba4LaMNb3O15 (M = Ti, Sn) Ceramics,” Mater. Res. Bull., 39 (2004) 1649–1654.
    [27] H. Zhang, L. Fang, R. Dronskowski, P. Müller, and R. Z. Yuan, “Some A6B5O18 Cation-Deficient Perovskites in the BaO–La2O3–TiO2–Nb2O5 System,” J. Solid State Chem., 177 (2004) 4007–4012.
    [28] N. Santha and M. T. Sebastian, “Low Temperature Sintering and Microwave Dielectric Properties of Ba4Sm9.33Ti18O54 Ceramics,” Mater. Res. Bull., 43 (2008) 2278–2284.
    [29] K. Wakino, K. Minai, and H. Tamura, “Microwave Characteristics of (Zr,Sn)TiO4 and BaO–PbO–Nd2O3–TiO2 Dielectric Resonators,” J. Am. Ceram. Soc., 67 (1984) 278–281.
    [30] K. Ezaki, Y. Baba, H. Takahashi, K. Shibata, and S. Nakano, “Microwave Dielectric Properties of CaO–Li2O–Ln2O3–TiO2 Ceramics,” Jpn. J. Appl. Phys., 32 (1993) 4319–4322.
    [31] Y. J. Gu, J. L. Huang, Q. Li, D. M. Sun, and H. Xu, “Low-Temperature Firing and Microwave Dielectric Properties of 16CaO–9Li2O–12Sm2O3–63TiO2 Ceramics with V2O5 Addition,” J. Eur. Ceram. Soc., 28 (2008) 3149–3153.
    [32] A. Belous, O. Ovchar, D. Durylin, M. Valant, M. M. Krzmanc, and D. Suvorov, “Microwave Composite Dielectrics Based on Magnesium Titanates,” J. Eur. Ceram. Soc., 27 (2007) 2963–2966.
    [33] M. Isobe and Y. Ueda, “Synthesis, Structure and Physical Properties of Spinel Solid Solutions Mg2TiO4–MgTi2O4,” J. Alloys Compd., 383 (2004) 85–88.
    [34] C. L. Huang and J. Y. Chen, “High-Q Microwave Dielectrics in the (Mg1–xCox)2TiO4 Ceramics,” J. Am. Ceram. Soc., 92 (2009) 379–383.
    [35] C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectrics Using Mg2(Ti1–xSnx)O4 (x = 0.01–0.09) Solid Solution,” J. Am. Ceram. Soc., 92 (2009) 2237–2241.
    [36] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,” Jpn. J. Appl. Phys., 33 (1994) 5466–5470.
    [37] C. L. Huang, J. J. Wang, and C. Y. Huang, “Microwave Dielectric Properties of Sintered Alumina Using Nano-Scaled Powders of α Alumina and TiO2,” J. Am. Ceram. Soc., 90 (2007) 1487–1493.
    [38] C. W. Zheng, S. Y. Wu, X. M. Chen, and K. X. Song, “Modification of MgAl2O4 Microwave Dielectric Ceramics by Zn Substitution,” J. Am. Ceram. Soc., 90 (2007) 1483–1486.
    [39] C. L. Huang, T. J. Yang, and C. C. Huang, “Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a τf Compensator,” J. Am. Ceram. Soc., 92 (2009) 119–124.
    [40] C. F. Tseng and C. H. Hsu, “A New Compound with Ultra Low Dielectric Loss at Microwave Frequencies,” J. Am. Ceram. Soc., 92 (2009) 1149–1152.
    [41] V. Tolmer and G. Desgardin, “Low-Temperature Sintering and Influence of the Process on the Dielectric Properties of Ba(Zn1/3Ta2/3)O3,” J. Am. Ceram. Soc., 80 (1997) 1981–1991.
    [42] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang, and R. E. Newnham, “Effect of Glass Additions on BaO–TiO2–WO3 Microwave Ceramics,” J. Am. Ceram. Soc., 77 (1994) 1909–1916.
    [43] Y. C. Chen and Y. H. Chang, “Dielectric Properties of B2O3-Doped La(Mg0.5Sn0.5)O3 Ceramics at Microwave Frequencies,” J. Alloys Compd., 477 (2009) 450–453.
    [44] Y. Gu, J. Huang, Y. Wang, D. Sun, Q. Li, F. Li, and H. Xu, “Low Temperature Firing of CaO–Li2O–Sm2O3–TiO2 Ceramics with BaCu(B2O5) Addition,” Solid State Commun., 149 (2009) 555–558.
    [45] Y. C. Chen and Y. W. Zeng, “Influence of CuO Additions and Sintering Temperatures on the Microwave Dielectric Properties of CaLa4Ti5O17 Ceramics,” J. Alloys Compd., 481 (2009) 369–372.
    [46] W. W. Cho, K. I. Kakimoto, and H. Ohsato, “Microwave Dielectric Properties and Low-Temperature Sintering of MgTiO3–SrTiO3 Ceramics with B2O3 or CuO,” Mater. Sci. Eng. B, 121 (2005) 48–53.
    [47] C. L. Huang and J. J. Wang, “Microwave Dielectric Properties of (1–x)(Mg0.95Co0.05)TiO3–xCa0.6La0.8/3TiO3 Ceramics with V2O5 Addition,” Solid-State Electron., 50 (2006) 1349–1354.
    [48] R. C. Pullar, K. Okeneme, and N. McN. Alford, “Temperature Compensated Niobate Microwave Ceramics with the Columbite Structure, M2+Nb2O6,” J. Eur. Ceram. Soc., 23 (2003) 2479–2483.
    [49] W. C. Tzou, Y. C. Chen, C. F. Yang, and C. M. Cheng, “Microwave Dielectric Characteristics of Mg(Ta1–xNbx)2O6 Ceramics,” Mater. Res. Bull., 41 (2006) 1357–1363.
    [50] S. Butee, A. Kulkarni, O. Prakash, R. P. R. C. Aiyar, S. George, and M. Sebastian, “High Q Microwave Dielectric Ceramics in (Ni1–xZnx)Nb2O6 System,” J. Am. Ceram. Soc., 92 (2009) 1047–1053.
    [51] R. C. Pullar, “The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6): A Critical Review,” J. Am. Ceram. Soc., 92 (2009) 563–577.
    [52] D. Y. Lee, S. J. Yoon, J. H. Yeo, S. Nahn, J. H. Paik, K. C. Whang, and B. G. Ahn, “Crystal Structure and Microwave Dielectric Properties of La(Mg1/2Ti1/2)O3 Ceramics,” J. Mater. Sci. Lett., 19 (2000) 131–134.
    [53] S. Y. Cho, H. J. Youn, H. J. Lee, and K. S. Hong, “Contribution of Structure to Temperature Dependence of Resonant Frequency in the (1–x)La(Zn1/2Ti1/2)O3.xATiO3 (A = Ca, Sr) System,” J. Am. Ceram. Soc., 84 (2001) 753–758.
    [54] D. L. Cairns, I. M. Reaney, N. Otten, D. Iddles, and T. Price, “Structural Determination and Microwave Properties of (x)Re(Co1/2Ti1/2)O3–(1–x)CaTiO3 (Re = La and Nd) Solid Solutions,” J. Eur. Ceram. Soc., 26 (2006) 875–882.
    [55] D. W. Kim, K. H. Ko, and K. S. Hong, “Influence of Copper(II) Oxide Additions to Zinc Niobate Microwave Ceramics on Sintering Temperature and Dielectric Properties,” J. Am. Ceram. Soc., 84 (2001) 1286–1290.
    [56] S. P. Wu, J. Ni, J. H. Luo, and X. H. Ding, “Preparation of ZnNb2O6–TiO2 Microwave Dielectric Ceramics for Multi-Layer Cofired Component,” Mater. Chem. Phys., 117 (2009) 307–312.
    [57] D. Zhou, H. Wang, X. Yao, and L. X. Pang, “Microwave Dielectric Properties of Low Temperature Firing Bi2Mo2O9 Ceramic,” J. Am. Ceram. Soc., 91 (2008) 3419–3422.
    [58] J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, S. Nahm, J. H. Paik, B. H. Choi, and H. J. Lee, “Low-Temperature Sintering and Microwave Dielectric Properties of V2O5-Added Zn2SiO4 Ceramics,” J. Am. Ceram. Soc., 91 (2008) 4133–4136.
    [59] F. Li, J. Xue, and J. Wang, “Ferroelectric and Dielectric Properties of Pb(Mg1/3Ta2/3)0.7Ti0.3O3 Thin Films Derived from RF Magnetron Sputtering,” J. Am. Ceram. Soc., 88 (2005) 2769–2774.
    [60] J. B. Lim, Y. H. Jeong, K. P. Hong, S. Nahm, H. J. Sun, and H. J. Lee, “Investigation on the Electrical Properties of the Ba2Ti9O20 Thin Films for Metal–Insulator–Metal Capacitor Application,” J. Electrochem. Soc., 154 (2007) H412–H415.
    [61] Y. H. Jeong, J. B. Lim, J. C. Kim, S. Nahm, H. J. Sun, and H. J. Lee, “Microstructure and Dielectric Properties of Amorphous BaSm2Ti4O12 Thin Films for MIM Capacitor,” J. Eur. Ceram. Soc., 27 (2007) 2849–2853.
    [62] M. B. Yu, J. Ning, S. Balakumar, V. N. Bliznetsov, G. O. Lo, N. Balasubramanian, and D. L. Kwong, “A Method of Fabricating Metal–Insulator–Metal (MIM) Capacitor in Cu/Low-k Backend Interconnection Process for RF Application,” Thin Solid Films, 504 (2006) 257–260.
    [63] N. Konofaos and G. P. Alexiou, “A Methodology for the Implementation of MOSFETs with a High-k Dielectric Gate Material on the Design of 90 nm Technology Circuits,” Int. J. Electron., 95 (2008) 333–349.
    [64] M. Cho, H. B. Park, J. Park, C. S. Hwang, J. C. Lee, S. J. Oh, J. Jeong, K. S. Hyun, H. S. Kang, Y. W. Kim, and J. H. Lee, “Thermal Annealing Effects on the Structural and Electrical Properties of HfO2/Al2O3 Gate Dielectric Stacks Grown by Atomic Layer Deposition on Si Substrates,” J. Appl. Phys., 94 (2003) 2563–2571.
    [65] C. H. Chen, K. C. Chuang, and J. G. Hwu, “Characterization of Inversion Tunneling Current Saturation Behavior for MOS(p) Capacitors with Ultrathin Oxides and High-k Dielectrics,” IEEE Trans. Electron Devices, 56 (2009) 1262–1268.
    [66] L. Kang, J. Gao, H. R. Xu, S. Q. Zhao, H. Chen, and P. H. Wu, “Epitaxial Mg2SiO4 Thin Films with a Spinel Structure Grown on Si Substrates,” J. Cryst. Growth, 297 (2006) 100–104.
    [67]S. Dueñas, H. Castán, H. García, A. Gómez, L. Bailón, K. Kukli, J. Aarik, M. Ritala, and M. Leskelä, “Comparative Study of Flatband Voltage Transients on High-k Dielectric-Based Metal–Insulator–Semiconductor Capacitors,” J. Electrochem. Soc., 155 (2008) G241–G246.
    [68] C. L. Huang, J. J. Wang, and C. H. Hsu, “Influence of Deposition Pressure and RF Power on the Structure and Electrical Properties of Zr0.8Sn0.2TiO4 Thin Films Prepared by RF Magnetron Sputtering,” J. Vac. Sci. Technol. B, 25 (2007) 299–305.
    [69] X. T. Li, B. Wang, M. R. Li, J. F. Chen, G. R. Han, W. J. Weng, and P. Y. Du, “Effect of Magnesium Doping on the Growth and Dielectric Properties of (Pb,Sr)TiO3 Thin Films Deposited by RF Magnetron Sputtering,” J. Cryst. Growth, 310 (2008) 1148–1153.
    [70] A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, “Crystal Structural Refinement of Corundum-Structured A4M2O9 (A = Co and Mg, M = Nb and Ta) Microwave Dielectric Ceramics by High-Temperature X-Ray Powder Diffraction,” J. Eur. Ceram. Soc., 27 (2007) 2977–2981.
    [71] C. C. You, C. L. Huang, and C. C. Wei, “Single-Block Ceramic Microwave Bandpass Filters,” Microwave J., 37 (1994) 24–35.
    [72] S. B. Cohn, “Parallel-Coupled Transmission-Line-Resonator Filters,” IRE Trans. Microwave Theory Tech., 6 (1958) 223–231.
    [73] S. Caspi and J. Adelman, “Design of Combline and Interdigital Filters with Tapped-Line Input,” IEEE Trans. Microwave Theory Tech., 36 (1988) 759–763.
    [74] U. H. Gysel, “New Theory and Design for Hairpin-Line Filters,” IEEE Trans. Microwave Theory Tech., 22 (1974) 523–531.
    [75] E. G. Cristal and S. Frankel, “Hairpin-Line and Hybrid Hairpin-Line/Half-Wave Parallel-Coupled-Line Filters,” IEEE Trans. Microwave Theory Tech., 20 (1972) 719–728.
    [76] J. S. Hong and M. J. Lancaster, “Cross-Coupled Microstrip Hairpin-Resonator Filters,” IEEE Trans. Microwave Theory Tech., 46 (1998) 118–122.
    [77] G. L. Matthaei, N. O. Fenzi, R. J. Forse, and S. M. Rohlfing, “Hairpin-Comb Filters for HTS and Other Narrow-Band Applications,” IEEE Trans. Microwave Theory Tech., 45 (1997) 1226–1231.
    [78] M. Sagawa, K. Takahashi, and M. Makimoto, “Miniaturized Hairpin Resonator Filters and Their Application to Receiver Front-End MIC’s,” IEEE Trans. Microwave Theory Tech., 37 (1989) 1991–1997.
    [79] C. M. Tsai, S. Y. Lee, and H. M. Lee, “Transmission-Line Filters with Capacitively Loaded Coupled Lines,” IEEE Trans. Microwave Theory Tech., 51 (2003) 1517–1524.
    [80] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a Planar Filter Using a Feed Structure,” IEEE Trans. Microwave Theory Tech., 50 (2002) 2362–2367.
    [81] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed, Wiley, New York, (1976).
    [82] D. Kajfez and P. Guillon, Dielectric Resonators, Artech House, Massachusetts, (1986).
    [83] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IRE Trans. Microwave Theory Tech., 8 (1960) 402–410.
    [84] W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 (1970) 476–485.
    [85] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., 33 (1985) 586–592.
    [86] B. A. Movchan and A. V. Demshishin, Fizika Metal, 28 (1969) 653.
    [87] J. A. Thornton, “The Microstructure of Sputter-Deposited Coatings,” J. Vac. Sci. Technol. A, 4 (1986) 3059–3065.
    [88] R. Messier and R. C. Ross, “Evolution of Microstructure in Amorphous Hydrogenated Silicon,” J. Appl. Phys., 53 (1982) 6220–6225.
    [89] R. Messier, A. P. Giri, and R. A. Roy, “Revised Structure Zone Model for Thin Film Physical Structure,” J. Vac. Sci. Technol. A, 2 (1984) 500–503.
    [90] T. Mihara and H. Watanabe, “Electronic Conduction Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin-Film Capacitors: Part Ι,” Jpn. J. Appl. Phys., 34 (1995) 5664–5673.
    [91] S. Ezhilvalavan and T. Y. Tseng, “Conduction Mechanisms in Amorphous and Crystalline Ta2O5 Thin Films,” J. Appl. Phys., 83 (1998) 4797–4801.
    [92] S. Agarwal, C. L. Sharma, and R. Manchanda, “Electrical Conduction in (Ba,Sr)TiO3 Thin Film MIS Capacitor under Humid Conditions,” Solid State Commun., 119 (2001) 681–686.
    [93] S. M. Sze, Physics of Semiconductor Devices, 2nd ed, Wiley, New York, (1981).
    [94] P. Li and T. M. Lu, “Conduction Mechanisms in BaTiO3 Thin Films,” Phys. Rev. B, 43 (1991) 14261–14264.
    [95] A. Grove, B. E. Deal, E. H. Show, and C. T. Sah, “Investigation of Thermally Oxidised Silicon Surfaces Using Metal–Oxide–Semiconductor Structures,” Solid-State Electron., 8 (1965) 145–163.
    [96] D. G. Ong, Modern MOS Technology: Processes, Devices, and Design, McGraw-Hill, New York, (1994).
    [97] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks and Coupling Structures, McGraw-Hill, New York, (1964).
    [98] C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectrics Using SrTiO3-Modified (Mg0.95Co0.05)2TiO4 Ceramics,” J. Alloys Compd., 485 (2009) 706–710.
    [99] C. L. Liu and T. B. Wu, “Effects of Calcium Substitution on the Structural and Microwave Dielectric Characteristics of [(Pb1–xCax)1/2La1/2](Mg1/2Nb1/2)O3 Ceramics,” J. Am. Ceram. Soc., 84 (2001) 1291–1295.
    [100] J. J. Bian, Y. F. Dong, and G. X. Song, “Microwave Dielectric Properties of A-Site Modified Ba(Co0.7Zn0.3)1/3Nb2/3O3 by La3+,” J. Am. Ceram. Soc., 91 (2008) 1182–1187.
    [101] C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectric Ceramics Using (Mg1–xMnx)2TiO4 (x = 0.02–0.1) Solid Solution,” J. Am. Ceram. Soc., 92 (2009) 675–678.
    [102] C. L. Huang and S. S. Liu, “Low-Loss Microwave Dielectrics in the (Mg1–xZnx)2TiO4 Ceramics,” J. Am. Ceram. Soc., 91 (2008) 3428–3430.
    [103] C. L. Huang and C. E. Ho, “Microwave Dielectric Properties of (Mg1–xNix)2TiO4 (x = 0.02–0.1) Ceramics,” Int. J. Appl. Ceram. Technol., 7 (2010) E163–E169.
    [104] C. L. Huang and S. S. Liu, “Characterization of Extremely Low Loss Dielectrics (Mg0.95Zn0.05)TiO3 at Microwave Frequency,” Jpn. J. Appl. Phys., 46 (2007) 283–285.
    [105] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Cryst. A, 32 (1976) 751–767.
    [106] A. C. Larson and R. B. Von Dreele, “General Structure Analysis System,” Los Alamos Laboratory Report LAUR 86–748, Los Alamos National Laboratory, Los Alamos, NM, 1994.
    [107] B. D. Silverman, “Microwave Absorption in Cubic Strontium Titanate,” Phys. Rev., 125 (1962) 1921–1930.
    [108] S. J. Penn, N. McN. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, “Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina,” J. Am. Ceram. Soc., 80 (1997) 1885–1888.
    [109] H. Tamura, “Microwave Dielectric Losses Caused by Lattice Defects,” J. Eur. Ceram. Soc., 26 (2006) 1775–1780.
    [110] M. S. Fu, X. Q. Liu, and X. M. Chen, “Structure and Microwave Dielectric Characteristics of Ca1–xNd2x/3TiO3 Ceramics,” J. Eur. Ceram. Soc., 28 (2008) 585–590.
    [111] I. S. Kim, W. H. Jung, Y. Inaguma, T. Nakamura, and M. Itoh, “Dielectric Properties of A-Site Deficient Perovskite-Type Lanthanum-Calcium-Titanium Oxide Solid Solution System [(1–x)La2/3TiO3–xCaTiO3 (0.1 x 0.96)],” Mater. Res. Bull., 30 (1995) 307–316.
    [112] C. L. Huang, J. T. Tsai, and Y. B. Chen, “Dielectric Properties of (1–y)Ca1–xLa2x/3TiO3–y(Li,Nd)1/2TiO3 Ceramic System at Microwave Frequency,” Mater. Res. Bull., 36 (2001) 547–556.
    [113] K. H. Yoon, W. S. Kim, and E. S. Kim, “Dependence of the Octahedral Bond Valence on Microwave Dielectric Properties of Ca1–xSm2x/3TiO3 Ceramics,” Mater. Sci. Eng. B, 99 (2003) 112–115.
    [114] P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, “Structure–Microwave Property Relations in (SrxCa(1–x))n+1TinO3n+1,” J. Eur. Ceram. Soc., 21 (2001) 1723–1726.
    [115] C. L. Huang and S. S. Liu, “Dielectric Characteristics of the (1–x)Mg2TiO4–xSrTiO3 Ceramic System at Microwave Frequencies,” J. Alloys Compd., 471 (2009) L9–L12.
    [116] C. L. Huang, S. S. Liu, and S. H. Chen, “Dielectric Properties of a New Ceramic System (Mg0.95Zn0.05)2TiO4–CaTiO3 at Microwave Frequencies,” Jpn. J. Appl. Phys., 48 (2009) 071402–1–071402–3.
    [117] C. L. Huang, S. S. Liu, and S. H. Chen, “Dielectric Properties of a Low-Loss (1–x)(Mg0.95Zn0.05)2TiO4–xSrTiO3 Ceramic System at Microwave Frequencies,” J. Alloys Compd., 480 (2009) 794–797.
    [118] M. A. Petrova, G. A. Mikirticheva, A. S. Novikova, and V. F. Popova, “Spinel Solid Solutions in the Systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4,” J. Mater. Res., 12 (1997) 2584–2588.
    [119] N. Santha, I. N. Jawahar, P. Mohanan, and M. T. Sebastian, “Microwave Dielectric Properties of (1–x)CaTiO3–xSm(Mg1/2Ti1/2)O3 [0.1 x 1] Ceramics,” Mater. Lett., 54 (2002) 318–322.
    [120] J. Y. Chen, Y. W. Tseng, and C. L. Huang, “Improved High Q Value of (1–x)Ca(Mg1/3Ta2/3)O3–xCa0.8Sm0.4/3TiO3 Solid Solution with Zero Temperature Coefficient of Resonant Frequency,” J. Alloys Compd., 494 (2010) 205–209.
    [121] F. Zhao, Z. Yue, Z. Gui, and L. Li, “Effects of Zinc Substitution on Crystal Structure and Microwave Dielectric Properties of CaLa4Ti5O17 Ceramics,” J. Am. Ceram. Soc., 89 (2006) 3421–3425.
    [122] L. Fang, Q. Yu, H. Zhang, C. Z. Hu, and B. L. Wu, “Microwave Dielectric Properties of a New A5B4O15-Type Cation-Deficient Perovskite Ba2La3Ti3TaO15,” J. Am. Ceram. Soc., 90 (2007) 1626–1628.
    [123] L. Fang, H. Su, Q. Yu, H. Zhang, and B. Wu, “A New Low-Loss Microwave Dielectric Ceramic Sr4LaTiNb3O15,” J. Am. Ceram. Soc., 91 (2008) 2769–2771.
    [124] W. Lei, W. Z. Lu, D. Liu, and J. H. Zhu, “Phase Evolution and Microwave Dielectric Properties of (1–x)ZnAl2O4–xMg2TiO4 Ceramics,” J. Am. Ceram. Soc., 92 (2009) 105–109.
    [125] P. RiaziKhoei, F. Azough, and R. Freer, “The Influence of ZnNb2O6 on the Microwave Dielectric Properties of ZrTi2O6 Ceramics,” J. Am. Ceram. Soc., 89 (2006) 216–223.
    [126] M. Maeda, T. Yamamura, and T. Ikeda, “Dielectric Characteristics of Several Complex Oxide Ceramics at Microwave Frequencies,” Jpn. J. Appl. Phys., 26 (Suppl. 2) (1987) 76–79.
    [127] R. C. Pullar, J. D. Breeze, and N. McN. Alford, “Characterization and Microwave Dielectric Properties of M2+Nb2O6 Ceramics,” J. Am. Ceram. Soc., 88 (2005) 2466–2471.
    [128] A. Belous, O. Ovchar, B. Jancar, and J. Bezjak, “The Effect of Non-Stoichiometry on the Microstructure and Microwave Dielectric Properties of the Columbites A2+Nb2O6,” J. Eur. Ceram. Soc., 27 (2007) 2933–2936.
    [129] Y. C. Zhang, Z. X. Yue, X. Qi, B. Li, Z. L. Gui, and L. T. Li, “Microwave Dielectric Properties of Zn(Nb1-xTax)2O6 Ceramics,” Mater. Lett., 58 (2004) 1392–1395.
    [130] C. L. Huang, J. Y. Chen, and B. J. Li, “Characterization and Dielectric Behavior of a New Dielectric Ceramics Ca(Mg1/3Nb2/3)O3–(Ca0.8Sr0.2)TiO3 at Microwave Frequencies,” J. Alloys Compd., 484 (2009) 494–497.
    [131] L. Fang, H. Su, Q. Yu, H. Zhang, and X. Cui, “Microwave Dielectric Properties of Ba2–xSrxLa3Ti3NbO15 Ceramics,” Mater. Lett., 62 (2008) 4121–4123.
    [132] H. Zhou, X. Chen, L. Fang, C. Hu, and H. Wang, “Preparation and Characterization of a New Microwave Dielectric Ceramic Ba4ZnTi11O27,” J. Am. Ceram. Soc., 93 (2010) 1537–1539.
    [133] M. P. Seabra, M. Avdeev, V. M. Ferreira, R. C. Pullar, and N. McN. Alford, “Structure and Microwave Dielectric Properties of La(Mg0.5Ti0.5)O3–CaTiO3 System,” J. Eur. Ceram. Soc., 23 (2003) 2403–2408.
    [134] C. L. Huang, H. L. Chen, and C. C. Wu, “Improved High Q Value of CaTiO3–Ca(Mg1/3Nb2/3)O3 Solid Solution with Near Zero Temperature Coefficient of Resonant Frequency,” Mater. Res. Bull., 36 (2001) 1645–1652.
    [135] C. L. Huang, J. J. Wang, B. J. Li, and W. C. Lee, “Effect of B2O3 Additives on Sintering and Microwave Dielectric Behaviors of 0.66Ca(Mg1/3Nb2/3)O3–0.34CaTiO3 Ceramics,” J. Alloys Compd., 461 (2008) 440–446.
    [136] J. J. Wang and C. L. Huang, “New Dielectric Materials of xSrTiO3–(1–x)Ca(Mg1/3Nb2/3)O3 Ceramic System at Microwave Frequency,” Mater. Lett., 60 (2006) 1280–1283.
    [137] C. T. Lee, C. Y. Huang, Y. C. Lin, J. Yang, and Y. C. Lee, “Structural and Dielectric Characteristics in a Ca(Mg1/3Nb2/3)O3–CaZrO3 System,” J. Am. Ceram. Soc., 90 (2007) 3148–3155.
    [138] C. L. Huang, S. S. Liu, and C. C. Chen, “High Dielectric Constant Low Loss in the (La1/2Na1/2)TiO3–Ca(Mg1/3Nb2/3)O3 Ceramic System at Microwave Frequency,” J. Alloys Compd., 468 (2009) L13–L16.
    [139] H. Liu, H. Yu, Z. Tian, Z. Meng, Z. Wu, and S. Ouyang, “Dielectric Properties of (1–x)CaTiO3–xCa(Zn1/3Nb2/3)O3 Ceramic System at Microwave Frequency,” J. Am. Ceram. Soc., 88 (2005) 453–455.
    [140] M. S. Fu, X. Q. Liu, X. M. Chen, and Y. W. Zeng, “Microstructure and Microwave Dielectric Properties of (1–x)Ca(Mg1/3Ta2/3)O3/xCaTiO3 Ceramics,” J. Am. Ceram. Soc., 91 (2008) 1163–1168.
    [141] I. Levin, J. Y. Chan, J. E. Maslar, T. A. Vanderah, and S. M. Bell, “Phase Transitions and Microwave Dielectric Properties in the Perovskite-Like Ca(Al0.5Nb0.5)O3–CaTiO3 System,” J. Appl. Phys., 90 (2001) 904–914.
    [142] S. Kucheiko, H. J. Kim, S. J. Yoon, and H. J. Jung, “Effect of ZnO Additive on Microstructure and Microwave Dielectric Properties of CaTi1–x(Fe0.5Nb0.5)xO3 Ceramics,” Jpn. J. Appl. Phys., 36 (1997) 198–202.
    [143] H. J. Kim, S. Kucheiko, S. J. Yoon, and H. J. Jung, “Microwave Dielectrics in the (La1/2Na1/2)TiO3–Ca(Fe1/2Nb1/2)O3 System,” J. Am. Ceram. Soc., 80 (1997) 1316–1318.
    [144] S. Kucheiko, J. W. Choi, H. J. Kim, and H. J. Jung, “Microwave Dielectric Properties of CaTiO3–Ca(Al1/2Ta1/2)O3 Ceramics,” J. Am. Ceram. Soc., 79 (1996) 2739–2743.
    [145] M. P. Seabra, M. Avdeev, V. M. Ferreira, R. C. Pullar, N. McN. Alford, and I. M. Reaney, “Structure–Property Relations in xBaTiO3–(1–x)La(Mg1/2Ti1/2)O3 Solid Solutions,” J. Am. Ceram. Soc., 87 (2004) 584–590.
    [146] Z. H. Yao, H. X. Liu, Z. Y. Shen, Z. Z. Chen, Z. H. Wu, H. T. Yu, and M. H. Cao, “Effect of V2O5 Additive to 0.4SrTiO3–0.6La(Mg0.5Ti0.5)O3 Ceramics on Sintering Behavior and Microwave Dielectric Properties,” Mater. Res. Bull., 41 (2006) 1972–1978.
    [147] R. Wang, J. Zhou, B. Li, and L. Li, “CaF2–AlF3–SiO2 Glass-Ceramic with Low Dielectric Constant for LTCC Application,” J. Alloys Compd., 490 (2010) 204–207.
    [148] M. C. Wu, K. T. Huang, and W. F. Su, “Microwave Dielectric Properties of Doped Zn3Nb2O8 Ceramics Sintered Below 950°C and Their Compatibility with Silver Electrode,” Mater. Chem. Phys., 98 (2006) 406–409.
    [149] G. Feng, L. Jiaji, H. Rongzi, L. Zhen, and T. Changsheng, “Microstructure and Dielectric Properties of Low Temperature Sintered ZnNb2O6 Microwave Ceramics,” Ceram. Int., 35 (2009) 2687–2692.
    [150] Y. C. Lee, C. S. Chiang, and Y. L. Huang, “Microwave Dielectric Properties and Microstructures of Nb2O5–Zn0.95Mg0.05TiO3+0.25TiO2 Ceramics with Bi2O3 Addition,” J. Eur. Ceram. Soc., 30 (2010) 963–970.
    [151] L. Gao, J. Zhai, X. Yao, and Z. Xu, “MgTiO3 and Ba0.60Sr0.40Mg0.15Ti0.85O3 Composite Thin Films with Promising Dielectric Properties for Tunable Applications,” J. Am. Ceram. Soc., 91 (2008) 3109–3112.
    [152] P. Srinivasan, E. Simoen, Z. M. Rittersma, W. Deweerd, L. Pantisano, C. Claeys, and D. Misra, “Effect of Nitridation on Low-Frequency (1/f) Noise in n- and p-MOSFETS with HFO2 Gate Dielectrics,” J. Electrochem. Soc., 153 (2006) G819–G825.
    [153] S. Abermann, O. Bethge, C. Henkel, and E. Bertagnolli, “Atomic Layer Deposition of ZrO2/La2O3 High-k Dielectrics on Germanium Reaching 0.5 nm Equivalent Oxide Thickness,” Appl. Phys. Lett., 94 (2009) 262904–1–262904–3.
    [154] S. Ezhilvalavan and T. Y. Tseng, “Progress in the Developments of (Ba,Sr)TiO3 (BST) Thin Films for Gigabit Era DRAMs,” Mater. Chem. Phys., 65 (2000) 227–248.
    [155] I. H. Nam, J. S. Sim, S. I. Hong, B. G. Park, J. D. Lee, S. W. Lee, M. S. Kang, Y. W. Kim, K. P. Suh, and W. S. Lee, “Ultrathin Gate Oxide Grown on Nitrogen-Implanted Silicon for Deep Submicron CMOS Transistors,” IEEE Electron Device Lett., 48 (2001) 2310–2316.
    [156] T. Manabe, I. Yamaguchi, W. Kondo, S. Mizuta, T. Kumagai, T. Nagahama, and T. Tsuchiya, “Topotaxy of Corundum-Type Tetramagnesium Diniobate and Ditantalate Layers on Rock-Salt-Type Magnesium Oxide Substrates,” J. Am. Ceram. Soc., 82 (1999) 2061–2065.
    [157] A. Kan, H. Ogawa, and A. Yokoi, “Sintering Temperature Dependence of Microwave Dielectric Properties in Mg4(TaNb1–xVx)O9 Compounds,” Mater. Res. Bull., 41 (2006) 1178–1184.
    [158] C. L. Huang and Y. B. Chen, “Effect of RF Power on Physical Properties of MgTiO3 Films by RF Magnetron Sputtering,” Jpn. J. Appl. Phys., 44 (2005) 6736–6738.
    [159] C. H. Hsu, “Influence of Annealing Treatments for ZnO-Doped Zr0.8Sn0.2TiO4 Thin Films by RF Magnetron Sputtering,” Thin Solid Films, 517 (2009) 5061–5065.
    [160] S. Yamashita and M. Makimoto, “Miniaturized Coaxial Resonator Partially Loaded with High-Dielectric-Constant Microwave Ceramics,” IEEE Trans. Microwave Theory Tech., 31 (1983) 697–703.
    [161] J. K. Ploured and C. L. Ren, “Application of Dielectric Resonators in Microwave Components,” IEEE Trans. Microwave Theory Tech., 29 (1981) 754–770.
    [162] K. Hano, H. Kohriyama, and K. I. Sawamoto, “A Direct-Coupled /4-Coaxial Resonator Bandpass Filter for Land Mobile Communications,” IEEE Trans. Microwave Theory Tech., 34 (1986) 972–976.
    [163] M. Makimoto and S. Yamashita, “Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators,” IEEE Trans. Microwave Theory Tech., 28 (1980) 1413–1417.
    [164] Q. X. Chu and F. C. Chen, “A Compact Dual-Band Bandpass Filter Using Meandering Stepped Impedance Resonators,” IEEE Microwave Wireless Compon. Lett., 18 (2008) 320–322.
    [165] A. Djaiz, M. Nedil, A. M. Habib, and T. A. Denidni, “Compact Multilayer Dual-Band Filter Using Slot Coupled Stepped-Impedance-Resonators Structure,” Microwave Opt. Technol. Lett., 51 (2009) 1635–1638.
    [166] T. Edwards, Foundations for Microstrip Circuit Design, 2nd ed, Wiley, New York, (1991).
    [167] W. H. Tu and K. Chang, “Compact Second Harmonic-Suppressed Bandstop and Bandpass Filters Using Open Stubs,” IEEE Trans. Microwave Theory Tech., 54 (2006) 2497–2502.
    [168] J. X. Chen and Q. Xue, “Dual-Mode Microstrip Bandpass Filter with Spurious Response Suppression,” Microwave Opt. Technol. Lett., 49 (2007) 556–558.

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE