| 研究生: |
黃聖文 Huang, Sheng-Wen |
|---|---|
| 論文名稱: |
一個基於二元搜尋樹的回切技巧與殘值超取樣架構的十四位元每秒取樣二百萬次之逐漸趨近式類比數位轉換器 A 14-bit 2-MS/s Successive-Approximation Analog-to-Digital Converter with Tree-Based Reversed Switching and Residue Oversampling |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 逐漸趨近式類比數位轉換器 、高線性 、高解析 、超取樣 、殘值超取樣 |
| 外文關鍵詞: | Successive-approximation register (SAR) analog-to-digital converter (ADC), High-linearity, High-resolution, Oversampling, Residue Oversampling |
| 相關次數: | 點閱:171 下載:32 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個高線性與高解析度之十四位元每秒取樣二百萬次逐漸趨近式類比數位轉換器。
此晶片結合了殘值超取樣的架構與本論文所提出的基於二元搜尋樹之回切技巧。所提出之回切技巧能透過重複利用已經切換過的電容進行回切來避免新的電容切換,減少電容不匹配的影響。而殘值超取樣技術透過交換電容的排列方式,產生不同的殘值電壓,對同一次取樣的殘值電壓做多次的量化,來產生較精確的數位碼。結合以上兩種技術,在不需校正的技巧下,能提升類比數位轉換器的精確度與有效減少電容不匹配的影響。
本論文以台積電180奈米製程研製一個十四位元的逐漸趨近式類比數位轉換器,核心電路面積為1.246mm2。當晶片操作在1.8伏特的電壓供應下與200萬赫茲(2-MS/s)的取樣頻率時,實測效能顯示,在奈奎斯特(Nyquist-rate)輸入頻率下,可以達到有效位元為 12.05 位元(SNDR為 74.28 dB),換算得到的轉換效率為 165.77 dB。
This thesis presents a high-linearity and high-resolution, 14-bit 2-MS/s successive-approximation register (SAR) analog-to-digital converter (ADC).
This chip adopts proposed Tree-Based Reversed Switching and Residue Oversampling. With the proposed Tree-Based Reversed Switching, switched capacitors could be reused to avoid new capacitor switching. Therefore, influence of capacitor mismatch is reduced. For Residue Oversampling, roles of capacitors are rearranged to generate different residue voltages, and residue voltages of the same sample are quantized and averaged to generate a high-precision digital code. By combining these two techniques, the accuracy of the ADC is improved and capacitor mismatch is reduced without calibration techniques.
The proof-of-concept 14-bit SAR ADC was fabricated in a TSMC 180-nm CMOS technology, of which the core circuits occupy an area of 1.246mm2. As the prototype operates at a supply voltage of 1.8-V and sampling rate of 2-MS/s, the measurement results show that the prototype ADC achieves 74.28 dB SNDR with a Nyquist-rate input. The Figure of Merit (FoMs) is 165.77 dB.
[1] B. Murmann, “ADC Performance Survey 1997−2019,” [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.
[2] Analog Devices Inc., The Data Conversion Handbook. W. Keater, ed. Burlington, MA: Newnes, 2005.
[3] M.Gustavsson, J. Wikner, N.Tan, CMOS data converters for communications, Kluwer Academic Publishers, 2000.
[4] C. C. Lee and M. P. Flynn, “A SAR-assisted two-stage pipeline ADC,”IEEE J. Solid-State Circuits, vol. 46, no. 4, Apr. 2011, pp. 859869.
[5] B. Verbruggen, M. Iriguchi, and J. Craninckx, “A 1.7mW 11b 250Ms/s 2× interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 466–468.
[6] B. Verbruggen, K. Deguchi, B. Malki, and J. Craninckx, “ A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1–2.
[7] W. Liu et al., “A 12-bit 50-MS/s 3.3 mW SAR ADC with background digital calibration,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1–4.
[8] J. A. McNeill, K. Y. Chan, M. C. W. Coln, C. L. David and C. Brenneman, “All-Digital Background Calibration of a Successive Approximation ADC Using the “Split ADC” Architecture,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 10, Oct. 2011, pp. 2355–2365.
[9] R. Kapustsa, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 472–473.
[10] C. Hsu et al., “A 12-b 40-MS/s Calibration-Free SAR ADC,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 3, March 2018, pp. 881–890.
[11] J. L. McCreary et al., “All-MOS charge distribution analog-to-digital conversion techniques–part I,” IEEE J. Solid-State Circuits, vol. SSC10, no. 6, Dec. 1975, pp. 371379.
[12] S. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-um CMOS,” in IEEE J. Solid-State Circuits, vol. 41, no. 12, Dec. 2006, pp. 26692680.
[13] J. H. Tsai et al., “A 0.003mm2 10b 240MS/s 0.7mW SAR ADC in 28nm CMOS With Digital Error Correction and Correlated-Reversed Switching,” in IEEE J. Solid-State Circuits, June 2015, pp. 1382-1398.
[14] H. Tai, Y. Hu, H. Chen and H. Chen, “A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196–197.
[15] G. Huang, S. Chang, C. Liu and Y. Lin, “A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications,” in IEEE J. Solid-State Circuits, vol. 47, no. 11, Nov. 2012, pp. 2783−2795.
[16] C. Liu, S. Chang, G. Huang, Y. Lin and C. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS,” 2010 Symposium on VLSI Circuits, Honolulu, HI, 2010, pp. 241−242.
[17] C. Kung, C. Huang, C. Li and S. Chang, “A Low Energy Consumption 10-Bit 100kS/s SAR ADC with Timing Control Adaptive Window,” IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1−4.
[18] Y. Chung, C. Yen, P. Tsai and B. Chen, “A 12-bit 40-MS/s SAR ADC With a Fast-Binary-Window DAC Switching Scheme,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 10, Oct. 2018, pp. 1989−1998.
[19] P. Harpe, E. Cantatore and A. v. Roermund, “A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 270271.
[20] Takashi Morie et al., “A 71dB-SNDR 50MS/s 4.2mW CMOS SAR ADC by SNR enhancement techniques utilizing noise,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 272-273.
[21] Y. Lim and M. P. Flynn, “A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC,” in IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 29012911, Dec. 2015.
[22] R. J. Van De Plassche, “Dynamic element matching for high-accuracy monolithic D/A converters,” in IEEE J. Solid-State Circuits, vol. 11, no. 6, Dec. 1976, pp. 795–800.
[23] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386–387.
[24] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” in IEEE J. Solid-State Circuits, vol. 45, no. 4, Apr. 2010, pp. 731–740.
[25] V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” Electron. Lett., vol. 46, no. 9, 2010, pp. 620–621.
[26] G.-Y. Huang et al., “A 10-bit 30-MS/s SAR ADC using a monotonic switchback switching method,” in IEEE Transactions on VLSI Systems, vol. 21, no. 3, Dec. 2013, pp. 584-588.
[27] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” in IEEE J. Solid-State Circuits, vol. 34, no. 5, May 1999, pp. 599–606.
[28] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, “A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 314–605.
[29] C. Hou, S. Chang, H. Wu, H. Hu and E. Cun, “An 8-bit 400-MS/s calibration-free SAR ADC with a pre-amplifier-only comparator,” International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2017, pp. 1–4.
[30] G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu, and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS,” in IEEE A-SSCC. 2013, pp. 289−292.
[31] P. Harpe, E. Cantatore, and A. van Roermund, “An Oversampled 12/14b SAR ADC with Noise Reduction and Linearity Enhancements achieving up to 79.1dB SNDR,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 194-195.
[32] Takuji Miki et al., “A 4.2 mW 50 MS/s 13 bit CMOS SAR ADC With SNR and SFDR Enhancement Techniques,” in IEEE J. Solid-State Circuits, 2015, pp. 1372-1381.
[33] M. Ding, P. Harpe, Y.-H. Liu, B. Busze, K. Philips, and H. Groot, “A 5.5fJ/conv-step 6.4MS/s 13b SAR ADC Utilizing a Redundancy-Facilitated Background Error-Detection-and-Correction Scheme,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2015, pp. 460−462.
[34] Anh Tuan Nguyen, Jian Xu, and Zhi Yang et al, “A 14-bit 0.17mm2 SAR ADC in 0.13μm CMOS for high precision nerve recording,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2015.
[35] Martin Krämer, “A 14b 35MS/s SAR ADC Achieving 75dB SNDR and 99dB SFDR with Loop-Embedded Input Buffer in 40nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2015, pp. 284-285.
[36] Minseob Shim, “Edge-Pursuit Comparator: An Energy-Scalable Oscillator Collapse-Based Comparator With Application in a 74.1 dB SNDR and 20 kS/s 15 b SAR ADC,” in IEEE J. Solid-State Circuits, vol. 52, no. 4, April. 2017, pp. 1077-1090.
[37] Junhua Shen et al, “A 16-bit 16MS/s SAR ADC with on-chip calibration in 55nm CMOS,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2017, pp. 282–283.