簡易檢索 / 詳目顯示

研究生: 吳章鵬
Wu, Chang-Peng
論文名稱: 中介層與不同摻雜物基板對鎳矽化物之熱穩定性影響
The Effects of Interlayer and different dopant substrates on the Thermal Stability of Nickel Silicides
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 89
中文關鍵詞: 鎳矽化物覆蓋層中介層離子佈植
外文關鍵詞: Nickel silicide, Capping layer, Interlayer, Ion implantation
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    相較於TiSi2與CoSi2,NiSi除了有較低的矽消耗,而且只需一階段退火。但是NiSi在高溫(>650°C)時卻會有熱穩定性不佳的問題,並容易形成高阻值的NiSi2相。為了改善及探討熱穩定性不佳的問題,研究中分三個部分討論,第一部分我們使用TiNx作為Ni的覆蓋層(capping layer),並經由不同的氮含量觀察對TiNx覆蓋在Ni上後形成的金屬矽化物之熱穩定性作分析。由實驗結果發現,NiSi的熱穩定性隨著TiNx氮含量的增高而改善。可發現隨著TiNx氮含量越高,NiSi的表面聚集也可有效被抑制。第二部分使用不同中介層(Interlayer)材料並探討對NiSi熱穩定性之影響,比較於TiNx覆蓋層,在Ni與Si之間加入一層中介層擁有更好的熱穩定,並由片電阻即時量測(in-situ Rs)實驗結果發現,Zn中介層能將NiSi製程溫度增加至 700℃仍有極低的片阻值,XRD量測結果也發現加入Zn中介層經過700℃退火仍沒有NiSi2峰值。第三部份,使用不同的覆蓋層對不同離子佈植基板之矽化物製程熱穩定性分析,同時利用SEM觀察表面的聚集現象,XRD分析NiSi的結晶性,並利用TEM輔助觀察NiSi的聚集行為。由結果可觀察利用TiN覆蓋層,於700℃下退火阻值皆有上升的趨勢。另外,在使用Zn作為中介層下,摻質對阻值的影響較不明顯,由片電阻即時量測可觀察到即使>650℃下退火依然沒有電阻急遽上升的情況產生,這也證實Zn在互補式金氧半電晶體製程作為NiSi中介層材料有極佳的特性。

    Abstract
    Compared with TiSi2 and CoSi2, NiSi has lower Si consumption, and just need one- step annealing. But NiSi has poor thermal stability and tends to form NiSi2 phase which has higher resistance. To improve and investigate the problem of poor thermal stability, this study was distributed into three parts to discuss. In the part I, TiNx was used as capping layer of NiSi, and the thermal stability of metal silicide which is formed by TiNx covered on Ni film was analyzed by different of nitrogen flows. According to the result of experiment, thermal stability of NiSi was improved with the increase of nitrogen flows in TiNx. It was found that the TiNx capping layer could improve the thermal stability of nickel silicides and inhibit silicide agglomeration. The TiNx film deposited with higher N2 flow rates had better thermal stability than those with lower N2 flow rates. In the part II, different interlayer and investigated the effect of thermal stability of NiSi. Compared with TiNx capping layer, adding interlayer between Ni and Si had better thermal stability behavior. According to the result of in-situ Rs, Zn interlayer could make NiSi maintain extremely low sheet resistance when the temperature increased to 700℃. The XRD result show that the adding Zn interlayer of nickel silicide not found NiSi2 phase. In the part III, we analyzed thermal stability of silicidation with different capping layers on different ion implantation-substrates. In this case, the surface agglomeration was observed by SEM, the crystallization of NiSi was analyzed by XRD, and the agglomeration of NiSi was observed by TEM. According to the result, the resistance of NiSi after annealing in 700℃ trended to increase. Besides, the influence of dopant on resistance was not obvious if Zn was used as interlayer.
    We could observe that the resistance of NiSi did not increase sharply by in-situ Rs. It could prove that Zn has great behavior as interlayer of NiSi in CMOS process.

    Contents 摘要 I Abstract II 誌 謝 IV Contents V Table Captions VII Figure Captions VIII Chapter 1 Introduction 1 1.1 Overview 1 1.2 Applications of Silicides 1 1.3 Motivation of the Study 2 Chapter 2 Theory 4 2-1 Silicides Formation 4 2-1-1. Phase Sequence and Reaction Kinetics 4 2-1-2. Epitaxial NiSi2 on Silicon 7 2.2 Silicide General Background 8 2-2-1 Salicide technology 10 2-2-2 Titanium Silicide 11 2-2-3 Cobalt Silicide 13 2-2-4 Nickel Silicide 13 2-3 Processing Temperature Window 15 2-4 Phenomenons during the Silicidation 16 2-4-1 Silicon Consumption Issue 16 2-4-2 Bridge effect 19 2-4-3 Narrow line effect 20 Chapter 3 Experiment Scheme 21 3-1 Experimental materials 21 3-1-1 Targets 21 3-1-2 Substrate 21 3-1-3 Gas 21 3-1-4 Chemicals 21 3-2 Process Equipment 22 3-2-1 Sputter System 22 3-2-2 Annealing System 25 3-2-3 Potentiostat 27 3.3 Analysis Equipments 29 3-3-1 Four point probe 29 3.3.2 Scanning Electron Microscope (SEM) 32 3-3-3 Transmission Electron Microscopy (TEM) 33 3-3-4 Secondary ion mass spectrometry (SIMS) 33 3.4 Experimental methods and procedures 34 3-4-1 Wafer cleaning steps and sample preparation 34 3-4-2 Sputter process of the barrier layer 34 3-4-3 Annealing process 35 3-4-4 Solution configuration 35 3-4-5 Physical analysis of the material properties 35 3-4-6 Electrical measurements (Sheet resistance measurements) 36 3-4-7 Experimental procedures 37 Chapter 4 Results and Discussions 40 4-1 Nickel silicides with TiNx capping layer 40 4-1-1 Sheet resistance of the nickel silicide films with TiNx 40 4-1-2 Nickel silicides surface with the TiNx capping layers by SEM 43 4-1-3 GXRD spectra of the nickel silicides with the TiNx capping layers 45 4-1-4 Potential dynamic curves of the nickel, NiSi and various TiNx 47 4-2 Improvement in thermal stability of nickel silicides using different interlayer films 49 4-2-1 In-Situ Rs of nickel silicides with silicidation temperatures 49 4-2-2 GLXRD plots of the nickel silicide with different interlayer as a function of temperature 52 4-2-3 FESEM images obtained from the samples at different temperatures 55 4-2-4 Potential dynamic curves of the different interlayer 62 4-3 Thermal stability of interlayer nickel silicide and electrical behavior with ions implantation 66 4-3-1 In-Situ Rs of nickel silicides with different silicidation 66 4-3-2 GXRD plots of the nickel silicide with different implanted ions 70 4-3-3 FESEM images obtained from the samples 72 4-3-4 TEM cross-sectional images of implanted 76 4-3-5 SIMS analysis of implanted nickel silicides 79 Chapter 5 Conclusion 83 References 86

    References
    [1] S.P. Murarka, “Silicides for VLSI applications,” Academic Press, Orlando,Florida, 1-16 (1983).
    [2] M.A. Nicolet, “Diffusion barriers in thin films,” Thin Solid Films 52,415-443 (1987).
    [3] P.S. Ho, “General aspects of barrier layers for very large scale integration applications,” Thin Solid Films 96, 301-316 (1982).
    [4] H.H. Hosack, “Platinum silicide-aluminum Schottky diodecharacteristics,” Appl. Phys.
    Lett. 21, 256-258 (1972).
    [5] P.S. Ho, “Basic problems in interconnect metallization for VLSI applications,” Proc. 1984 ROC IEDMS, Edited by L.J. Chen, (Hsinchu,ROC, 1984), 471-476.
    [6] S.P. Murarka, “Review: self-aligned silicides for VLSI applications-are they alternates for metals,” Semiconductor Silicon 1986, 297-315(1986).
    [7] K. Tsukamoto, T. Okamoto, M. Shimiu, T.Matsukawa, and H. Nakata,“ Self-aligned titanium silicidation of submicron MOS devices by rapid thermal annealing,” IEDM 84, 130-135 (1984).
    [8] A. Wang and J. Lien, “A self-aligned titaninum polycide gate and interconnect formation
    scheme using rapid thermal annealing,”Electrochemical Society Extended Abstracts 85-1, 317-325 (1985).
    [9] M.E. Alperin, T.C. Hollaway, R.A. Haken, C.D. Gosmeyer, R.V. Karnaugh, and W.D.
    Parmantie, “Development of the self-aligned titaninum silicide process for VLSI applications,” IEEE Trans. Electron Devices, ED32, 141-149 (1985).
    [10] T. Yamaguchi, S. Morimoto, H.K. Park, and G.C. Eiden, “Process and device performance of submicrometer-channel CMOS devices using deep-trench isolation and self-aligned TiSi2 technologies,” ibid, ED-32,184-190 (1985).
    [11] Y. Taur, G.J. Hu, R. Dennard, L.M. Terman, C.Y. Ting, and K.E. Petrillo,“A self-aligned 1-ìm-channel CMOS technology with retrograde n-well and thin epitaxy,” ibid, ED-32, 203-212 (1985).
    [12] H. Kaneko, M. Koyanagi, S. Shimizu, Y. Kubota, and S. Kishino, “Novel submicron
    MOS devices by self-aligned nitridation of silicide,” IEDM 85, 208-211 (1985).
    [13] T. Sands, J. Washburn, E. Myers, and D. K. Sadana, Nucl. Instrum. And Methods in
    Phys. B 7/8, 337-345 (1985).
    [14] E. Nagasawa, H. Okahayashi, and M. Morimoto, “A self-aligned Mo silicide
    formation,” Jpn. J. Appl. Phys. 22, L57 (1983).
    [15] H. Okabayashi, M. Morimoto, and E. Nagasawa, “Low-resistance MOS technology
    using self-aligned refractory silicidation,” IEEE Tran. ED-31,1329-1341 (1984).
    [16] W.J. Chen, Ph. D. Thesis, “Interfacial Reaction of Nickel Metal Thin Films on
    Silicon,” National Tsing Hua University (1991).
    [17] H.M. Lo, M. S. Thesis, “The Effects of Stress on the Formation of Nickel Silicides,”
    National Tsing Hua University (1998).
    [18] L.J Chen and C.Y. Hou, “On the Formation of Nickel Silicides by Thermal Annealing,”
    Chn. J. Mat. Sci. 15 (1), 1-11 (1983). [19]http://download.intel.com/museum/Moores_Law/Printed_Materials/Moores_Law_2pg.pdf
    [20]http://download.intel.com/technology/silicon/HighK-MetalGate-PressFoils-final.pdf
    [21] C.S. Kang, H.J. Cho, R. Choi, Y.H. Kim C.Y. Kang, S.J. Rhee, C. Choi, M.S. Skbar, and J.C. Lee: Electron Devices, IEEE Transactions on, Vol. 51, Issue 2, Feb, 220, (2004).
    [22] R. Beyers and R. Sinclair: J. Appl. Phys. 57, 5240 ~1985 (1985).
    [23] S. Wolf: ”Silicon Processing for The VLSI ERA”, second addition, Lattice Press, vol. 2,Chapter 3, 2000.
    [24] V. Probst, H. Schaber, P. Lippens, L. Van den hove and R. De Keersmacker: Appl. Phys.Lett. 52 (1988) 1803.
    [25] H. Iwai et al. / Microelectronic Engineering 60 (2002) 157 –169
    [26] Y. Taur, J. Y. C Sun, D. Moy, L. K. Wang, B. Davari, S. P. Klepner and C. Y . Ting: IEEETrans. Electron Devices 34 (1987) 575.
    [27] C. C. Wang, C. J. Lin and M. C. Chen: J. Electrochem. Soc. 150 (2003) G557.
    [28] A. Lauwers, A. Steegen, M. de Potter, R. Lindsay, A. Satta, H. Bender and K. Maex: J. Vac.Sci. & Technol. B 19 (2001) 2026.
    [29] C. C. Wang, Y. K. Wu, W.H. Wu and M. C. Chen: Japan Society of Applied Physics Vol.44 No. 1A, 2005, pp. 108~113.
    [30] M.-A. Nicolet and S. S. Lau,in VLSI Electronics—Microstructure Sciences, edited by N. G.Einsprich and G. B. Larrabee ~Academic, New York, 1983, Vol. 6, Chap. 6.
    [31] T. Ohguro, et al: IEEE Trans, Electron Devices 41, 2305 (1994).
    [32] T. Ohguro, S. Nakamura, M.Koike, T. Morimoto, A. Nishiymam, Y.Usihiku, T. Yoshitomi,M. Ono, M. Saito and H. Iwai: IEEE Trans. Electron Devices 41 (1994) 2305.
    [33] C. C. Wang, and M. C. Chen: JJAP, Vol. 45, No. 3A, 2006, pp. 1582-1587.
    [34] H. Jeon, C. A. Sukow, J. W. Honeycutt, G. A. Rozgonyi, and R. J.Nemanich, J. Appl. Phys., vol. 71, no. 9, p.1, 1992.
    [35] T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K.Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata,and H. Iwai, IEEE Trans. Electron Devices, vol. 42, no. 5, p. 915, 1995.
    [36] J. A. Kittl, Q. Z. Hong, H. Yang, N. Yu, S.B. Samavedam and M. A.Gribelyuk, Thin Solid Films, vol. 332, p. 404, 1998.
    [37] Q. Z. Hong, W. T. Shiau, H. Yang, J. A. Kittl, C. P. Chao, H. L. Tsai, S.Krishnan, I. C. Chen, R. H. Havemann, IEDM Tech. Digest 1997, p. 107,1997.
    [38] B. A. Julies, in: Corss-sectional Transimission Electron Microscopyof Nickel Silicide Formation, University of the Western Cape, Bellville, 1993.
    [39] M. -A. Nicolt and S. S. Lau, in VLSI Electronics: Microstructure Science, vol. 6, Chapter 6, Academic Press, pp. 457, 346, 358, 1983.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE