| 研究生: |
許世和 Hsu, Shih-Ho |
|---|---|
| 論文名稱: |
具效率提升機制之自激返馳式轉換器研製 Design and Implementation of Self-Oscillating Flyback Converter with Efficiency-Enhancement Mechanisms |
| 指導教授: |
林瑞禮
Lin, Ray-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 自激返馳式轉換器 、無損耗緩振電路 、共模電壓 、間歇模式 、能量回收 、空載損耗 |
| 外文關鍵詞: | self-oscillating flyback converter, lossless snubber, common mode voltage, burst mode, energy recovery, no-load power requirement |
| 相關次數: | 點閱:140 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一具間歇模式與多重能量回收機制之自激返馳式轉換器。
因傳統具RCD緩振電路之自激返馳式轉換器有低效率、高空載功耗的缺點。更者,為了符合IEC62684規範的共模電壓限制,將變壓器一、二次側繞組間的寄生電容降低,但其缺點為變壓器的漏感增加。變壓器漏感的增加造成其所儲存的能量增加,在開關截止瞬間產生高壓突波,導致開關電壓應力上升。
因此加入無損耗緩振電路來降低開關電壓應力與提高轉換效率。為了提升更多轉換效率的缺點,在自激返馳式轉換器加入能量回收繞組來回收閘極-源極電容所釋放的能量。更者,利用間歇控制機制來降低空載和輕載的功耗。
最後,實做一7.5 W的具間歇模式與多重能量回收機制之自激返馳式轉換器,以驗證本論文所提出之電路特性,諸如減少共模電壓、降低開關電壓應力、提升轉換效率、降低空載損耗等。
This thesis presents a self-oscillating flyback converter with efficiency enhancement mechanisms using lossless snubber and the energy recovery winding.
The conventional self-oscillating flyback converter with RCD snubber has the issues of low conversion efficiency and high no-load power loss. Furthermore, in order to fulfill the 95Vp-p voltage limitation of IEC62684 common mode (CM) Standard, the parasitic capacitor of a transformer between the primary and secondary windings has to be reduced, which leads to large leakage inductance for the transformer. However, the larger leakage inductance stores more energy to cause the high voltage spike on the main switch during the turn-off transition period.
Therefore, the lossless snubber is employed to suppress the voltage spike and increase the conversion efficiency. In order to increase more conversion efficiency, the energy recovery winding is employed to recycle the energy discharged from the gate-source capacitor of the main switch. Furthermore, the burst mode control mechanism is utilized to reduce the power consumption at the no-load and light-load conditions.
Finally, a prototype circuit of the 7.5W self-oscillating flyback converter with efficiency enhancement mechanisms is built to verify the performances, such as the common mode voltage, the voltage stress on the switch, the conversion efficiency, and the no-load power loss.
[1] T. R. Efland, “The earth is mobile – power,” in Proc. IEEE International Conference on Power Semiconductor, pp. 2-9, Apr. 2003.
[2] D. D.-C. Lu and V. G. Agelidis, “Photovoltaic-battery-powered DC bus system for common portable electronic devices,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 849–855, Mar. 2009.
[3] Y. Jang, and M. M. Jovanovic, "A contactless electrical energy transmission system for portable-telephone battery chargers," IEEE Trans. Industrial Electron., vol. 50, no. 3, pp. 520-527, June 2003.
[4] B. Sahu and G. A. Rincon-Mora, "A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable applications," IEEE Trans. Power Electron., vol. 19, no. 2, pp. 443- 452, Mar. 2004.
[5] D. Maksimovic and S. Cuk, “Switching converters with wide DC conversion range,” IEEE Trans. Power Electron., vol. 6, no. 1, pp. 151-157, Jan. 1991.
[6] L. Calderone, L. Pinola, and V. Varoli, “Optimal feed-forward compensation for PWM dc–dc converters with “linear” and “quadratic” conversion ratio,” IEEE Trans. on Power Electron., vol. 7, no. 2, pp. 349–355, apr. 1992.
[7] H. E. Tacca, “Single-switch two-output flyback-forward converter operation,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 903–911, Sep.1998.
[8] B. Singh, S. Singh, A. Chandra, and K. Al-Haddad, “Comprehensive study of single-phase AC-DC power factor corrected converters with high-frequency isolation,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 540–556, Nov. 2011.
[9] B. T. Irving and M. M. Jovanovic, “Analysis and design of self-oscillating flyback converter,” in Proc. IEEE International Conference on APEC’02, pp. 897–903, Mar. 2002.
[10] T. Suntio, “Average and small-signal modeling of self-oscillating flyback converter with applied switching delay,” IEEE Trans.Power Electron., vol. 21, no. 2, pp. 479-486, Feb. 2006.
[11] Annex II to MoU regarding Harmonisation of a Charging Capability for Mobile Phones, 12 Jan. 2010.
[12] T. Mahto, H. Malik, Y. R. Sood, and R.K. Jarial, “Impact of usage duration on mobile phones EMI characteristics,” In Proc. IEEE International Conference on Communication Systems and Network Technologies (CSNT), 2012, pp. 558-562.
[13] T. S. Kim and S. W. Kim, “A method for reducing EMI noise in portable charging applications,” In Proc. IEEE International Conference on Power Electronics for Distributed Generation Systems (PEDG’ 03), 2012, pp. 200-206.
[14] A. Bruce Carlson, Circuits: engineering concepts and analysis of linear electric circuits. Singapore: Brooks/Cole Press, 2000.
[15] C. W. T. McLyman, Transformer and Inductor Design Handbook, 3nd, Boca Raton, FL : CRC Press, 2004.
[16] S. J. Finney, B. W. Williams, and T. C. Green, “RCD snubber revisited,” IEEE Trans. Ind. Appl., vol. 32, no. 1, pp. 155-160, Jan.1996.
[17] A. Hren, J. Korelic, and M. Milanovic, “RC-RCD clamp circuit for ringing losses reduction in a flyback converter,” IEEE Trans. Circuits Syst., vol. 53, no. 5, pp. 369-373, May 2006.
[18] T. Ninomiya, T. Tanaka, and K. Harada, “Analysis and optimization of a nondissipative LC turn-off snubber,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 147-156, Apr. 1988.
[19] A. Abramovitz, T. Cheng, and K. Smedley, “Analysis and design of forward converter with energy regenerative snubber,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 667–676, Mar. 2010.
[20] A. Abramovitz, C. S. Liao, and K. Smedley , “State-plane analysis of regenerative snubber for flyback converters,” IEEE Trans. Power Electron., vol. 28, no. 11 , pp. 5323–5332, Nov. 2012.
[21] B. H. Lee, K. B. Park, C. E. Kim and G. W. Moon, “No-load power reduction technique for AC/DC adapters,” IEEE Trans. Power Electron., Vol. 27, no. 8, pp. 3685-3694, Aug. 2012.
[22] European Commission, “Code of Conduct on Energy Efficiency of External Power Supplies Version 5,” European Commission, Sep. 2012.
[23] Y.-K. Lo, S.-C. Yen, and C.-Y. Lin, “A high-efficiency ac-to-dc adaptor with a low standby power consumption,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 963–965, Feb. 2008.
[24] W. Feng, F. C. Lee, P. Mattavelli, “Optimal trajectory control of burst mode for LLC resonant converter,” IEEE Trans. Power Electron., Vol. 28, no.1, pp. 457-466, Jan. 2013.
[25] Sharp, “photo coupler,” PC817 datasheet.
[26] Fairchild Semiconductor, “Programmable Shunt Regulator,” TL431 datasheet, 2003.
[27] Panasonic, “Transistor,” 2SC1384 datasheet.
[28] Infineon technologies, “Cool MOS Power Transistor,” SPD02N80C3 datasheet, September 2011.