簡易檢索 / 詳目顯示

研究生: 吳俊賢
Wu, Chun-Hsien
論文名稱: 昇降壓型電壓轉換器之混沌行為分析與控制
Chaotic Behavior Analysis and Control of a Buck-Boost Converter
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 125
中文關鍵詞: 準週期性分歧混沌昇降壓型電壓轉換器OGY控制TDFC控制
外文關鍵詞: quasi-periodic, buck-boost converter, chaos, bifurcation, OGY, TDFC
相關次數: 點閱:98下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係探討一具輸出濾波器之昇降壓型電壓轉換器的混沌行為。有別於傳統電壓轉換器的建模方式,本論文因考慮二極體的非線性現象,故加入二極體的指數型模型。而在系統分析方面,本文採用三種不同的電壓迴路補償器,分別是比例控制器(P-type compensator)、比例-積分控制器(PI-type compensator)以及比例-積分-微分控制器(PID-type compensator)。在使用三種不同的控制器的情況下,本文試著改變系統的參數,如輸入電壓、輸出電阻、脈波調變的週期等等,以探討系統平衡點的穩定度,並計算李亞普諾夫指數(Lyapunov exponents)和碎形維度(Fractal dimension)。由數值模擬結果顯示,系統在輸入電壓或脈波調變(Pulse-width Modulation)的週期超過一臨界值時,會產生分歧現象以及準週期運動。而在控制混沌方面,本文採用OGY(Ott, Grebogi, and Yorke)控制和時間延遲回饋控制(Time-Delayed Feedback Control)。經由數值模擬可發現,當系統軌跡呈現準週期性或週期加倍(period doubling)時,此兩種控制法則的確可將系統軌跡拉回到龐加萊映射(Poincaré map)的平衡點,使系統呈現週期性運動。

    This thesis investigates the chaotic behavior of a buck-boost converter with an output low-pass filter. Unlike the conventional approaches for modeling a DC-DC converter, the exponential model of the diode is employed in this thesis to account for the nonlinear characteristics of the diode. As for the system analysis, three voltage-loop compensators are adopted: P-type compensator, PI-type compensators, and PID-type compensator. With these three compensators, the values of different system parameters, such as input voltage and PWM (Pulse-width Modulation) period, are varied to analyze the stability of the fixed point and compute the Lyapunov exponents as well as the fractal dimension. In numerical simulations, it is observed that bifurcation and quasi-periodicity occur as the system parameters are beyond certain critical values. In addition, for controlling chaos, two methods, OGY (Ott, Grebogi, and Yorke) and TDFC (Time-Delayed Feedback Control), are adopted. These two approaches are found effective to pull the system trajectory back to the fixed on the Poincaré map when the system’s behavior is period-doubling or quasi-periodic.

    中文摘要…………………………………………………………………Ⅰ ENGLISH ABSTRACT………………………………………………………Ⅱ ACKNOWLEDGEMENT……………………………………………………… Ⅲ CONTENTS…………………………………………………………………Ⅴ LIST OF TABLES…………………………………………………………Ⅷ LIST OF FIGURES……………………………………………………… Ⅸ 1. Introduction………………………………………………… 1 1.1 Motivation…………………………………………………… 1 1.2 Literature Review……………………………………………2 1.3 Contribution………………………………………………… 5 1.4 Organization of the Thesis……………………………… 5 2. Preliminaries…………………………………………………7 2.1 Poincaré Maps…………………………………………………7 2.2 Quasi-periodicity………………………………………… 11 2.3 Bifurcation………………………………………………… 13 2.4 Strange Attractors…………………………………………16 2.5 Lyapunov Exponents…………………………………………18 2.6 Dimension Calculation…………………………………… 23 2.6.1 Capacity Dimension…………………………………………23 2.6.2 Correlation Dimension…………………………………… 26 3. Modeling of the Buck-Boost Converter…………………29 3.1 Introduction of the Buck-Boost Converter……………29 3.1.1 Continuous-Conduction Mode (CCM)………………………31 3.1.2 Discontinuous-Conduction Mode (DCM)………………… 34 3.2 Piecewise Linear Model of the Buck-Boost Converter34 3.2.1 Buck-Boost Converter with P-type Compensator………38 3.2.2 Buck-Boost Converter with PI-type Compensator…… 40 3.2.3 Buck-Boost Converter with PID-type Compensator……42 3.3 Nonlinear Modeling of the Buck-Boost Converter……43 3.3.1 Buck-Boost Converter with P-type Compensator………44 3.3.2 Buck-Boost Converter with PI-type Compensator…… 45 3.3.3 Buck-Boost Converter with PID-type Compensator……46 3.4 Problem Formulation……………………………………… 47 4. Chaos Analysis of the Buck-Boost Converter…………48 4.1 Construction of the Poincaré Map………………………48 4.2 Derivations of the Jacobian matrix……………………50 4.3 System Specifications…………………………………… 56 4.4 Buck-Boost Converter with P-Type Compensator………57 4.4.1 Simulation Results…………………………………………57 4.4.1.1 Variations of System Parameters……………………… 57 4.4.1.2 Different PWM Waveforms………………………………… 75 4.5 Buck-Boost Converter with PI-Type Compensator… …78 4.5.1 Simulation Results…………………………………………78 4.5.1.1 Variations of System Parameters……………………… 78 4.5.1.2 Different PWM Waveforms……………………………… …90 4.6 Buck-Boost Converter with PID-Type Compensator……94 4.6.1 Simulation Results…………………………………………94 4.6.1.1 Variations of System Parameters……………………… 94 4.6.1.2 Different PWM Waveforms………………………………… 98 4.7 Summary………………………………………………………102 5. Control of Chaos………………………………………… 104 5.1 OGY Control…………………………………………………105 5.1.1 Brief Introduction of OGY Control……………………105 5.1.2 Simulation Results……………………………………… 106 5.2 Time Delay Feedback Control……………………………111 5.2.1 Brief Introduction of Time Delay Feedback Control111 5.2.2 Simulation Results……………………………………… 112 6. Conclusions and Future Work……………………………117 6.1 Conclusions…………………………………………………117 6.2 Future Work…………………………………………………118 Reference………………………………………………………………120

    [1] C.-H. Wu and M.-Y. Cheng, “Study on Chaotic Motion of an Under-actuated Two-Link Robot Arm,” in Proceedings of the 2008 International Automatic Control Conference.
    [2] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, 1974.
    [3] A. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford, 2004.
    [4] R. Tymerski and V. Vorperian, “Generation and Classification of PWM DC-to-DC Converters,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 24, No. 6, pp. 743-754, 1988.
    [5] M. Alfayyoumi, A. H. Nayfeh, and D. Borojevic, “Modeling and Analysis of Switching-Mode DC-DC Regulators,” Int. J. Bifur. Chaos, Vol. 10, No. 2, pp. 373-390, 2000.
    [6] A. El Aroudi, M. Debbat, and R. Giral, “Bifurcations in DC-DC Switching Converters: Review of Methods and Applications,” Int. J. Bifur. Chaos, Vol. 15, No. 5, pp. 1549-1578, 2005.
    [7] C.-K. Tse and M. D. Bernardo, “Complex Behavior in Switching Power Converters,” in Proceedings of the IEEE, Vol. 90, No. 5, 2002.
    [8] M. di Bernardo and F. Vasca, “Discrete-Time Maps for the Analysis of Bifurcations and Chaos in DC/DC Converters,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 47, No. 2, pp. 130-143, 2000.
    [9] K. W. E. Cheng, M. Liu, and J. Wu, “Chaos Study and Paramerter-Space Analysis of the DC-DC Buck-Boost Converter,” IEE Proc.-Electr. Power Appl., Vol. 150, No. 2, pp. 126-138, 2003.
    [10] A. E. Aroudi, L. Benadero, E. Toribio, and S. Machiche, “Quasiperiodicity and Chaos in the DC-DC Buck-Boost Converter,” Int. J. Bifur. Chaos, Vol. 10, No. 2, pp. 359-371, 2000.
    [11] A. E. Aroudi, L. Benadero, E. Toribio, and G. Olivar, “Hopf Bifurcation and Chaos from Torus Breakdown in a PWM Voltage-Controlled DC-DC Boost Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 46, No. 11, pp. 1374-1382, 1999.
    [12] William C.-Y. Chan and C.-K. Tse, “Study of Bifurcations in Current-Programmed DC/DC Boost Converters: From Quasi-Periodicity to Period-Doubling,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 44, No. 12, pp. 1129-1142, 1997.
    [13] Jonathan H. B. Deane, “Chaos in a Current-Mode Controlled Boost dc-dc Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 39, No. 8, pp. 680-683, 1992.
    [14] S. Parui and S. Banerjee, “Bifurcations Due to Transition From Continuous Conduction Mode to Discontinuous Conduction Mode in the Boost Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 50, No. 11, pp. 1464-1469, 2003.
    [15] D. C. Hamill, Jonathan H. B. Deane, and D. J. Jefferies, “Modeling of Chaotic DC-DC Converters by Iterated Nonlinear Mappings,” IEEE. Trans. on Power Electronics, Vol. 7, No. 1, pp. 25-36, 1992.
    [16] Y. Ma, H. Kawakami, and C.-K.Tse, “Bifurcation Analysis of Switched Dynamical Systems With Periodically Moving Borders,” IEEE Trans. on Circuits and Systems-I: Regular Paper, Vol. 51, No. 6, pp. 1184-1193, 2004.
    [17] S. Maity, D. Tripathy, T. K. Bhattacharya, and S. Banerjee, “Bifurcation Analysis of PWM-1 Voltage-Mode-Controlled Buck Converter Using the Exact Discrete Model,” IEEE Trans. on Circuits and Systems-I: Regular Paper, Vol. 54, No. 5, pp. 1120-1130, 2007.
    [18] E. Fossas and G. Olivar, “Study of Chaos in the Buck Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 43, No. 1, pp. 13-25, 1996.
    [19] S. Banerjee, “Coexisting Attractors, Chaotic Saddles, and Fractal Basins in a Power Electronic Circuit,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 44, No. 9, pp. 847-849, 1997.
    [20] Z. T. Zhusubaliyev, E. A. Soukhoterin, and E. Mosekilde, “Border-Collision Bifurcations on a Two-Dimensional Torus,” Chaos, Solitons and Fractals, Vol. 13, No. 9, pp. 1889-1915, 2002.
    [21] G. Yuan, S. Banerjee, E. Ott, and J. A. Yorke, “Border-Collision Bifurcations in the Buck Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 45, No. 7, pp. 707-716, 1998.
    [22] Z. T. Zhusubaliyev, E. Mosekilde, and S. Maity, S. Mohanan, and S. Banerjee, “Border Collision Route to Quasiperiodicity: Numerical Investigation and Experimental Confirmation,” Chaos, Vol. 16, No. 2, 2006.
    [23] Z. T. Zhusubaliyev, E. A. Soukhoterin, and E. Mosekilde, “Quasiperiodicity and Torus Breakdown in a Power Electronic DC/DC Converter,” Mathematics and Computers in Simulation, Vol. 73, No. 6, pp. 364-377, 2007.
    [24] Z. T. Zhusubaliyev and E. Mosekilde, “Torus Birth Bifurcations in a DC/DC Converter,” IEEE Trans. on Circuits and Systems-I: Regular Paper, Vol. 53, No. 8, pp. 1839-1850, 2006.
    [25] Z. T. Zhusubaliyev, E. A. Soukhoterin, and E. Mosekilde, “Quasi-Periodicity and Border-Collision Bifurcations in a DC-DC Converter With Pulsewidth Modulation,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 50, No. 8, pp. 1047-1057, 2003.
    [26] C.-K. Tse, D. Dai, and X. Ma, “Symbolic Analysis of Bifurcation in Switching Power Converters: A Practical Alternative Viewpoint of Border Collision,” Int. J. Bifur. Chaos, Vol. 15, No. 7, pp. 2263-2270, 2005.
    [27] M. di Bernardo, M. I. Feigin, S. J. Hogan, and M. E. Homer, “Local Analysis of C-Bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems,” Chaos, Solitons and Fractals, Vol. 10, No. 11, pp. 1881-1908, 1999.
    [28] M. D. Bernardo, F. Garofalo, L. Glielmo, and F. Vasca, “Switchings, Bifurcations, and Chaos in DC/DC Converters,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 45, No. 2, pp. 133-141, 1998.
    [29] T. Saito, T. Kabe, Y. Ishikawa, Y. Matsuoka, and H. Torikai, “Piecewise Constant Switched Dynamical Systems in Power Electronics,” Int. J. Bifur. Chaos, Vol. 17, No. 10, pp. 3373-3386, 2007.
    [30] S. K. Mazumder and K. Acharya, “Multiple Lyapunov Function Based Reaching Condition for Orbital Existence of Switching Power Converters,” IEEE Trans. on Power Electronics, Vol. 23, No. 3, pp. 1449-1471, 2008.
    [31] T. A. Johansen, “Computation of Lyapunov Functions for Smooth Nonlinear Systems Using Convex Optimization,” Automatica, Vol. 36, No. 11, pp. 1617-1626, 2000.
    [32] S. Almér, U. Jönsson, C.-Y. Kao, and J. Mari, “Stability Analysis of a Class of PWM Systems,” IEEE Trans. on Automatic Control, Vol. 52, No. 6, pp. 1072-1078, 2007.
    [33] L. Hou and Anthony N. Michel, “Stability Analysis of Pulse-Width-Modulated Feedback Systems,” Automatica, Vol. 37, No. 9, pp. 1335-1349, 2001.
    [34] S. K. Mazumderm A. H. Nayfeh, D. Boroyevich, “Theoretical and Experimental Investigation of the Fast- and Slow-Scale Instabilities of a DC-DC Converter,” IEEE Trans. on Power Electronics, Vol. 16, No. 2, pp. 201-216, 2001.
    [35] Y. Chen, C.-K. Tse, S.-C. Wong, and S.-S. Qiu, “Interaction of Fast-Scale and Slow-Scale Bifurcations in Current-Mode Controlled DC/DC Converters,” Int. J. Bifur. Chaos, Vol. 17, No. 5, pp. 1609-1622, 2007.
    [36] H. G. Schuster, Handbook of Chaos Control, Wiley-VCH, 1999.
    [37] G. Chen, Controlling Chaos and Bifurcations in Engineering System, CRC, 2000.
    [38] G. Poddar, K. Chakrabarty, and S. Banerjee, “Control of Chaos in DC-DC Converters,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 45, No. 6, pp. 672-676, 1998.
    [39] L.-Q. Wang, X.-Y. Wei, W.-G. Wen, and T. Xie, “OGY Control of the Chaotic Current Mode Buck-Boost Switching Converter,” Information and Control, Vol. 34, No. 6, pp. 742-746, 2005.
    [40] R. S. Bueno and J. L. R. Marrero, “Control of DC-DC Converters in the Chaotic Regime,” in Proceedings of the 1998 IEEE International Conference on Control Applications.
    [41] H. H. C. Iu and B. Robert, “Control of Chaos in a PWM Current-Mode H-Bridge Inverter Using Time-Delayed Feedback,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 50, No. 8, pp. 1125-1129, 2003.
    [42] C. Batlle, E. Fossas, and G. Olivar, “Stabilization of Periodic Orbits of the Buck Converter by Time-Delayed Feedback,” Int. J. Circ. Theor. Appl., Vol. 27, No. 6, pp. 617-631, 1999.
    [43] T. Hikihara, M. Konaka, and Y. Ueda, “Controlling Chaotic Chattering in Discontinuous Switching Mode of DC-DC Buck Converter,” IECON, 2000.
    [44] A. N. Natsheh, J. G. Kettleborough, and N. B. Janson, “Experimental Study of Controlling Chaos in a DC-DC Boost Converter,” Chaos, Solitons and Fractals, Vol., No., pp., 2007.
    [45] F. Angulo, J. E. Burgos, and G. Olivar, “Chaos Stabilization with TDAS and FPIC in Buck Converter Controlled by Lateral PWM and ZAD,” in Proceedings of the 2007 Mediterranean Conference on Control and Automation.
    [46] Y. Zhou, C.-K. Tse, S.-S. Qiu, and F. C. M. Lau, “Applying Resonant Parametric Perturbation to Control Chaos in the Buck DC/DC Converter with Phase Shift and Frequency Mismatch Coniderations,” Int. J. Bifur. Chaos, Vol. 13, No. 11, pp. 3459-3471, 2003.
    [47] D. Giaouris, A. Elbkosh, V. Pickert, B. Zahawi, and S. Banerjee, “Control of Period Doubling Bifurcations in DC-DC Converters,” in Proceedings of the 2006. Int. Control Conf..
    [48] C. Ivan, A. Serbanescu, “Control Methods on Unstable Periodic Orbits of a Chaotic Dynamical System-Control Chaos in Buck Converter,” in Proceedings of the 2008 Optimization of International Conference on Electrical and Electronic Equipment.
    [49] Y. Zhou, H. H. C. Iu, C.-K. Tse, and J.-N. Chen, “Controlling Chaos in DC/DC Converters Using Optimal Resonant Parametric Perturbation,” in Proceedings of the 2005 IEEE International Symposium on Circuits and Systems.
    [50] B.-R. Lin and C.-C. Hua, “Buck/Boost Converter Control with Fuzzy Logic Approach,” in Proceedings of the 1993 International Conference on Industrial Electronics, Control, and Instrumentation.
    [51] K. Guesmi, N. Essounbouli, A. Hamzaoui, J. Zaytoon, N. Manamanni, “Shifting Nonlinear Phenomenon in a DC-DC Converter Using a Fuzzy Logic Controller,” Mathematics and Computers in Simulation, Vol. 76, No. 5-6, pp. 398-409, 2008.
    [52] H. Poincaré, Mémoire sur les courbes définies par une equation différentielle, J. Math Pures et Appl, 7(3), 375-422; (1882). 8, 251-296; (1885). 1(4), 167-244; (1886). 2, 151-217; all reprinted (1928). Oeuvre, Tome I. Paris: Gauthier-Villar.
    [53] C. Chicone, Ordinary Differential Equations with Applications, Springer, 2006.
    [54] T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, 1989.
    [55] R. Seydel, From Equilibrium to Chaos-Practical Bifurcation and Stability Analysis, Elsevier, 1988.
    [56] H.-T. Yau, Chaotic Behavior Analysis and Control of Rotor-Oil Film Bearing System, Ph. D. Dissertation, National Cheng Kung University, 2000.
    [57] F. C, Moon, Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers, John Wiley & Sons, Inc., 1992.
    [58] J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991.
    [59] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vasano, “Determining Lyapunov Exponents from a Time Series,” Physica 16D, 286-317.
    [60] G. Benettin, L. Galgani, A. Giogilli, and J. M. Strelcyn, “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing All of Them. Part 2: Numerical Application,” Meccanica 15, 21-30.
    [61] H. G. Schuster and W. Just, Deterministic Chaos: An Introduction, Wiley-VCH, 2005.
    [62] K. Falconer, Fractal Geometry, John Wiley & Sons, Chichester, England, 1990.
    [63] Mohan, Undeland, and Robbins, Power Electronics: Converters, Applications, and Design, Wiley, New York, 2003.
    [64] 梁適安, 交換式電源供給器之理論與實務設計, 全華, 臺北市, 民國83年。
    [65] C.-T. Chen, Linear System Theory and Design, Oxford University Press, Inc., 1999.
    [66] D. A. Neamen, Electronic Circuit Analysis and Design, The McGraw-Hill Companies, Inc., 2001
    [67] Y.-P. Tian and X.Yu, “Stabilizing unstable periodic orbits of chaotic systems via an optimal principle,” Journal of the Franklin Institute, Vol. 337, No. 6, pp. 771-779, 2000.
    [68] Arnol’d, Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, 1992.
    [69] M.-Y. Cheng and C.-S. Lin, “Measurement of Robustness for Biped Locomotion Using Linearized Poincaré Map,” in Proceedings of the 1995 IEEE International Conference on Systems, Man, and Cybernetics.
    [70] Y. Ma, T. Kousaka, C.-K. Tse, and H. Kawakami, “General Consideration for Modeling and Analyzing Switched Dynamical Systems,” in Proceedings of the 2004 International Symposium on Nonlinear Theory and Its Applications.
    [71] Y. Ma, H. Kawakami, C.-K. Tse, and T. Kousaka, “General Consideration for Modeling and Analyzing Switched Dynamical Systems,” Int. J. Bifur. Chaos, Vol. 16, No. 3, pp. 693-700, 2006.
    [72] A. E. Aroudi and R. Leyva, “Quasi-Periodic Route to Chaos in a PWM Voltage-Controlled DC-DC Boost Converter,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 48, No. 8, pp. 967-978, 2001.

    下載圖示 校內:2012-07-07公開
    校外:2012-07-07公開
    QR CODE