| 研究生: |
楊昀叡 Yang, Yun-Jui |
|---|---|
| 論文名稱: |
船艦機庫幾何構型對直升機起降甲板風場結構之影響 The Influence of Frigate Hangar Geometries to The Flow Structures of Helicopter Flight Deck |
| 指導教授: |
陳政宏
Chen, Jeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 質點影像測速法 、甲板風場 、船舶風場跡流 、護衛艦 、船舶空氣動力學 |
| 外文關鍵詞: | PIV, Wind on deck, Ship airwake, Frigate, Ship aerodynamics |
| 相關次數: | 點閱:101 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因直升機於船艦起降時可能遭遇氣流通過機庫時所產生之渦流結構影響,本研究透過質點影像測速法搭配 Simple Frigate Shape (SFS)模型於迴流水槽進行直升機起降甲板風場相關實驗,並參照現有船艦之機庫設計,以 SFS 模型為基礎衍伸 Base、Corner、Incline、Chamfer 四種機庫幾何構型,分別測量其於正向迎風與斜向迎風時之流場結構,並分析其量測平面之流線、流速、渦度與各方向紊流強度等,初步歸納其機庫結構所產生之跡流流場特徵,與其在不同迎風角下之流場差異性,如 U 型渦流結構、甲板中心流向、高紊流強度位置等,根據以上結果的比較來得到各機庫幾何構型的流場結構差異,再以獲得之結論為基礎,給予直升機駕駛在不同條件下起降時對整體風場結構的判斷依據,或是其降落路徑可能遭遇之風向、紊流等,增加其應變能力,並提供未來船艦機庫外型設計與配置上,對直升機起降甲板風場控制與優化之參考方向。
實驗結果方面,本研究所量測獲得之速度分佈已與國外於風洞中測得之結果相當接近,然而質點影像測速法難以獲得完整數據之特定位置,或是擁有較為複雜流場結構的機庫構型,在未來可以透過更多模擬、實驗與真實船艦海上風場測試,來進行本研究結果正確性的驗證與細節的補充。
During the landing or taking off procedure on the flight deck of ships, a helicopter might be influenced by the vortex structure caused by the wind passing through the hangar. To study the flow field in the region of flight deck, this research is to test Simple Frigate Shape (SFS) Model by using Particle Image Velocimetry (PIV) in circulating water tank. With observing the flow structure of four types of hangar (Base, Corner, Incline, and Chamfer) and analyzing the streamlines, flow speed, vorticity, and turbulence intensity, we can approximately summarize the characteristics of flow structure influenced by the airwake of hangar. Therefore, with taking these conclusions as a basic knowledge, we can give pilots several guidelines to determine the flow structure under different conditions. Furthermore, it also can provide some concepts of flight deck flow field controlling and optimizing when designing the structure and allocation of the hangar in the future.
[1] Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review Fluid Mech, 1991.23:261-304.
[2] Bardera, R. (2014). Experimental investigation of the flow on a simple frigate shape (SFS). Hindawi Publishing Corporation, The Scientific World Journal, Volume 2014, Article ID 818132, http://dx.doi.org/10.1155/2014/818132
[3] Barlow, J. B.; Rae, W. H. Jr.; & Pope, A. (1999). Low-speed wind tunnel testing (Third edition). John Wiley & Sons, Inc.
[4] Chao, Y. C.; Han, J. M.; & Jeng, M. S. (1990). A quantitative laser sheet image processing method for the study of the coherent structure of a circular jet flow. Experiments in Fluids 9, 323-332.
[5] Chao, Y. C.; Jeng, M. S.; & Han, J. M. (1991). Visualization and image processing of an acoustically excited jet flow. Experiments in Fluids 12, 29 40.
[6] Cheng, I. P. (2016). The flow field simulation and energy analysis in rolling U-shaped water tank. Master Thesis, Department of Systems and Naval Mechatronic Engineering, National Cheng Kung Universuty, Taiwan, R.O.C.
[7] Coleman, H. W.; & Steele, W. G. (2009). Experimentation, Validation, and Uncertainty Analysis for Engineers, Third Edition. John Wiley & Sons, Inc. ISBN: 978-0-470-16888-2
[8] Deng, Z.; Adrian, R. J.; & Tomkins, C. (2002). Sensitivity of Turbulence in Transpired Channel to Injection Velocity Small-Scale Nonuniformity. AIAA Journal, 40(11):2241-2246, DOI: 10.2514/2.1586
[9] Deng, Z.; Richmond, M. C.; Guensch, G. R.; & Mueller, R. P. (2004). Study of fish response using particle image velocimetry and high-speed, high-resolution imaging. Technical Report, Pacific Northwest National Laboratory. DOI: 10.2172/15020943
[10] Driver, D. M.; Seegmiller, H. L.; & Marvinf, J. G. (1987). Time-dependent behavior of a reattaching shear layer. AIAA Journal, Vol. 25, No.7, pp. 914-919.
[11] Forrest, J. S.; & Owen, I. (2009). An investigation of ship airwakes using Detached-Eddy Simulation. Computers & Fluids, 39 (2010) 656–673.
[12] Forrest, J. S.; Karria, C.; & Owen, I. (2016). Evaluating ship superstructure aerodynamics for maritime helicopter operations through CFD and flight simulation. The Aeronautical Journal, Available on CJO 2016, DOI:10.1017/aer.2016.76
[13] Greenwell, D. I.; & Barrett, R. V. (2006). Control of ship air wakes using inclined screens. National Aerospace Laboratory NLR - 32nd European Rotorcraft Forum, ERF 2006.
[14] He, W. T. (2014). On the structure and performance of low aspect ratio foil with tubercle. Master Thesis, Department of Systems and Naval Mechatronic Engineering, National Cheng Kung Universuty, Taiwan, R.O.C. DOI: 10.6844/NCKU.2015.01268
[15] Herry, B. (2011). Aerodynamic study of a 3D backward facing double step applied to safer launch and recovery of helicopters on ships. Doctoral Thesis, Université de Valenciennes et du Hainaut Cambrésis, France.
[16] Huang, G. X. (2016). Visualizations and PIV measurements of the vortical flows around a surface-mounted hydrofoil. Master Thesis, National Taiwan Ocean University, Keelung, Taiwan, R.O.C.
[17] Johns, Michael K. (1988). Flow visualization of the airwake around a model of a DD-963 class destroyer in a simulated atmospheric boundary layer. Calhoun: The NPS Institutional Archive, institutional archive of the naval postgraduate school, Monterey, USA, http://hdl.handle.net/10945/23240
[18] Kääriä, Christopher H.; Owen, I.; Wang, Y.; & White, M. D. (2013). An experimental technique for evaluating the aerodynamic impact of ship superstructure on helicopter operations. Ocean Engineering, 61, 97-108.
[19] Keane, R. D.; & Adrian, R. J. (1990). Optimization of particle image velocimeters. Part I: Double pulsed systems. Measurement Science and Technology, 1, 1202-1215.
[20] Kelly, M. F. (2018). The development, validation, and integration of aircraft carrier airwakes for piloted flight simulation. Doctoral Thesis, School of Engineering, University of Liverpool, UK.
[21] Kompenhans, J.; Raffel, M.; Dieterle, L.; Dewhirst, T.; Vollmers, H.; Ehrenfried, K.; Willert, C.; Pengel, K.; Kähler, C.; Schröder, A.; & Ronneberger, O. (1999). Journal of Visualization, Vol. 2, No. 3/4 (Special issue to VSJ-SPIE98).
[22] Lee, R. G.; & Zan, S. J. (2004). Unsteady Aerodynamic Loading on a Helicopter Fuselage in a Ship Airwake. Journal of the American Helicopter Society, Volume 49, Number 2, pp. 149-159(11). DOI: https://doi.org/10.4050/JAHS.49.149
[23] Long, L. N.; Horn, J. F.; Sezer-Uzol, N.; & Lee, D. (2005). Simulation of helicopter shipboard launch and recovery with time-accurate airwakes. Article in Journal of Aircraft, March 2005, DOI: 10.2514/1.6786.
[24] Makky, Ahmed Al.; Alaswad, A.; Gibson Desmond.; & Olabi, A. G. (2016). Prediction of the gas emission from porous media with the concern of energy and environment. Renewable and Sustainable Energy Reviews, 68 (2017) 1144–1156.
[25] Meinhart, C. D.; Wereley, S. T.; & Santiago, J. G. (1999). PIV measurements of a microchannel flow. Experiments in Fluids, 27, 414-419.
[26] Nobach, H.; & Bodenschatz, E. (2009). Limitations of accuracy in PIV due to individual variations of particle image intensities. Experiments in Fluids, Volume 47, Issue 1, pp 27–38.
[27] Nogueira, J.; Lecuona, A.; & Rodriguez, P. A. (1997). Data validation, false vectors correction and derived magnitudes calculation on PIV data. Measurement Science and Technology, 8, 1493–1501. PII: S0957-0233(97)84047-7
[28] Orbay, E.; & Sezer-Uzol, N. (2016). Computational fluid dynamics simulations of ship airwake with a hovering helicopter rotor. Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016, ICCFD9-281.
[29] Raffel, M.; Willert, C.; Wereley, S.; & Kompenhans, J. (1998). Particle Image Velocimetry: A Practical Guide. Springer, ISBN: 3-540-63683-3. DOI: 10.1007/978-3-662-03637-2
[30] Rao, A. N.; Minelli, G.; Zhang, J.; Basara, B.; & Krajnovic, S. (2018). Investigation of the near-wake flow topology of a simplified heavy vehicle using PANS simulations. Journal of Wind Engineering & Industrial Aerodynamics, 183, 243–272.
[31] Reddy, K.R.; Toffoletto, R.; & Jones, K.R.W. (2000). Numerical simulation of ship airwake. Computers & Fluids, 29 (2000) 451-465, Air Operations Division, Defence Science and Technology Organisation, PO Box 4331, Melbourne, Victoria 3001, Australia.
[32] Rosenfeld, A.; & Kak, A. C. (1982). Digital Picture Processing, Volume 2. ISBN: 978-0-12-597302-1. DOI: https://doi.org/10.1016/C2009-0-21955-6
[33] Rosenfeld, A.; & Pfaltz, J. L. (1967). Distance functions on digital pictures. Pattern Recognition, Vol. 1. pp. 33-61.
[34] Sciacchitano, A. (2019). Uncertainty quantificationin particle image velocimetry. Measurement Science and Technology. DOI: 10.1088/1361-6501/ab1db8
[35] Shafer, D. M. (2005). Active and passive flow control over the flight deck of small naval vessels. Master of science in Aerospace Engineering, Virginia Polytechnic Institute and State University, USA.
[36] Sousa, J. M. M. (2002). Turbulent flow around a surface-mounted obstacle using 2D-3C DPIV. Experiments in Fluids, 33 (2002) 854–862. DOI: 10.1007/s00348-002-0497-5
[37] Syms, G. F. (2007). Simulation of simplified-frigate airwakes using a lattice-Boltzmann method. Journal of Wind Engineering and Industrial Aerodynamics, 96 (2008) 1197–1206.
[38] Tai, T. C. (2001). Airwake simulation of modified TTCP/SFS ship. Naval Surface Warfare Center, Carderock Division Code 5300 West Bethesda, MD 20817-5700, USA.
[39] Thielicke, W. (2014). The flapping flight of birds: Analysis and application.
[40] Thielicke, W.; & Stamhuis, E. J. (2014). PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of Open Research Software, 2: e30, DOI: http://dx.doi.org/10.5334/jors.bl
[41] Tinney, C. E.; & Ukeiley, L. S. (2009). A study of a 3-D double backward-facing step. Experiments in Fluids, 47(3):427-438, DOI: 10.1007/s00348-009-0675-9
[42] Unnikrishnan, S.; Ogunremi, A.; & Sumner, D. (2017). The effect of incidence angle on the mean wake of surface-mounted finite-height square prisms. International Jouranl of Heat and Fluid Flow, 66 (2017) 137-156.
[43] Watson, N. A.; Kelly, M. F.; Owen, I.; Hodgeb, S. J.; & Whitea, M. D. (2019). Computational and experimental modelling study of the unsteady airflow over the aircraft carrier HMS Queen Elizabeth. Ocean Engineering, 172 (2019) 562–574.
[44] Wieneke, B. (2017). PIV uncertainty quantification and beyond. Doctoral thesis, Delft University of Technology, DOI: 10.13140/RG.2.2.26244.42886
[45] Wilkinson, C. H.; Zan, S. J.; Gilbert, N. E.; & Funk, J. D. (1999). Modelling and simulation of ship air wakes for helicopter operations : A collaborative venture. Research and Technology Organization, RTO MP-15, Amsterdam
[46] Yahaya , S.; Jikan, S. S.; Badarulzaman, N. A.; & Adamu, A. D. (2017). Chemical composition and particle size analysis of kaolin. Traektoriâ Nauki, Path of Science, 2017. Vol. 3, No 10, ISSN: 2413-9009
[47] Yang, Y. J. (2018). Flow visualization technology and experiment mechanism innovation of submarine flow field. MOST 106-2813-C-006-109-E, Report of College Student Research of Ministry of Science and Technology, Taiwan, R.O.C.
[48] Yuan, W.; Wall, A.; & Lee, R. (2018). Combined numerical and experimental simulations of unsteady ship airwakes. Computers and Fluids, 172 (2018) 29–53. National Research Council Canada, Ottawa, Canada K1A 0R6.
[49] Zan, S. J. (2001). Surface Flow Topology for a Simple Frigate Shape. Canadian Aeronautics and Space Journal, 47, 33-43, 2001. ISSN: 0008-2821
[50] Zan, S. J. (2002). Experimental Determination of Rotor Thrust in a Ship Airwake. Journal of the American Helicopter Society, Volume 47, Number 2, 1 April 2002, pp. 100-108(9). DOI: https://doi.org/10.4050/JAHS.47.100
[51] Zan, S. J.; Syms, G. F.; & Cheney, B. T. (1998). Analysis of patrol frigate air wakes. Aerodynamics Laboratory Institute for Aerospace Research National Research Council Canada Ottawa, Canada KIA OR6,
http://resolver.tudelft.nl/uuid:76b9ec45-4583-4e5c-840e-a088ff4915d8