| 研究生: |
成佳欣 Cheng, Jia-Sin |
|---|---|
| 論文名稱: |
建立基於顆粒濃度的分析方法於分析奈米塑膠在斑馬魚體的生物分布: 天然有機物的影響 Development of a particle number-based analysis to unravel the biodistribution of nanoplastics in zebrafish: the influence of natural organic matter |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 聚甲基丙烯甲酯 、聚苯乙烯 、天然有機物 、生物累積 |
| 外文關鍵詞: | poly methyl methacrylate (PMMA), polystyrene (PS), natural organic matter (NOM), bioaccumulation |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米塑膠(Nanoplastics, NPs)被定義為粒徑小於1 μm的塑膠顆粒,因其具有生物累積潛力及相關的生態與健康風險,已成為日益受到關注的環境污染物。然而,在複雜的生物基質中偵測與定量NPs仍是一項重大分析挑戰,阻礙了對其環境生物影響的準確評估。
本研究開發了一種基於顆粒數濃度的方法,將奈米塑膠與金奈米顆粒標記後,利用單顆粒感應耦合電漿質譜進行偵測。此方法應用於評估天然有機質(Natural organic matter, NOM)對斑馬魚體內奈米塑膠生物累積的影響。我們針對兩種代表性 NPs: 70 nm 聚苯乙烯與105 nm 聚甲基丙烯酸甲酯在有無天然有機物存在下的生物累積行為進行探討。
結果顯示,天然有機物顯著改變了奈米塑膠的攝取模式,增加了其在鰓、肝臟與腸道中的累積,卻降低了在肌肉中的累積。這種分布模式可能歸因於天然有機物改變了奈米塑膠的表面性質,促進其在高代謝活性器官中的吸收,同時減少在肌肉中的累積。
這些結果強調,在評估奈米塑膠的生物累積與環境風險時,需將天然有機物的影響納入考量,以確保風險評估的準確性。
Nanoplastics (NPs), defined as plastic particles smaller than 1 μm, have emerged as environmental contaminants of increasing concern due to their potential for bioaccumulation and associated ecological and health risks. However, detecting and quantifying NPs in complex biological matrices remains a significant analytical challenge, hindering accurate evaluation of their environmental fate and biological impacts.
In this study, we developed a particle number concentration-based method by labeling NPs with gold nanoparticles (AuNP) and detecting them using single-particle ICP-MS (spICP-MS). This method was applied to evaluate the influence of natural organic matter (NOM) on the bioaccumulation of NPs in zebrafish. We examined the bioaccumulation behavior of two representative NPs: 70 nm polystyrene (PS) and 105 nm poly methyl methacrylate (PMMA) in the presence and absence of NOM. The results revealed that NOM significantly modified NPs uptake, increasing accumulation in the gills, liver, and intestine while reducing it in muscle tissue. This pattern may be attributed to NOM altering the surface properties of NPs, which promotes their uptake in highly active organs while reducing accumulation in muscle. These results underscore the importance of considering NOM when assessing nanoplastic bioaccumulation, which is essential for accurate environmental risk evaluation.
(1) Tournier, V.; Topham, C. M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.-L.; Texier, H.; Gavalda, S.; Cot, M.; Guémard, E.; Dalibey, M.; Nomme, J.; Cioci, G.; Barbe, S.; Chateau, M.; André, I.; Duquesne, S.; Marty, A. An Engineered PET Depolymerase to Break down and Recycle Plastic Bottles. Nature 2020, 580 (7802), 216–219. https://doi.org/10.1038/s41586-020-2149-4.
(2) Wright, S. L.; Kelly, F. J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51 (12), 6634–6647. https://doi.org/10.1021/acs.est.7b00423.
(3) Anuar Sharuddin, S. D.; Abnisa, F.; Wan Daud, W. M. A.; Aroua, M. K. A Review on Pyrolysis of Plastic Wastes. Energy Conversion and Management 2016, 115, 308–326. https://doi.org/10.1016/j.enconman.2016.02.037.
(4) Wang, S.; AL-Hasni, N. S.; Liu, Z.; Liu, A. Multifaceted Aquatic Environmental Differences between Nanoplastics and Microplastics: Behavior and Fate. Environ. Health 2024. https://doi.org/10.1021/envhealth.4c00013.
(5) Alimi, O. S.; Farner Budarz, J.; Hernandez, L. M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52 (4), 1704–1724. https://doi.org/10.1021/acs.est.7b05559.
(6) Jiang, B.; Kauffman, A. E.; Li, L.; McFee, W.; Cai, B.; Weinstein, J.; Lead, J. R.; Chatterjee, S.; Scott, G. I.; Xiao, S. Health Impacts of Environmental Contamination of Micro- and Nanoplastics: A Review. Environmental Health and Preventive Medicine 2020, 25 (1), 29. https://doi.org/10.1186/s12199-020-00870-9.
(7) Gaylarde, C. C.; Baptista Neto, J. A.; da Fonseca, E. M. Nanoplastics in Aquatic Systems - Are They More Hazardous than Microplastics? Environmental Pollution 2021, 272, 115950. https://doi.org/10.1016/j.envpol.2020.115950.
(8) Recent developments in mass spectrometry for the characterization of micro- and nanoscale plastic debris in the environment | Analytical and Bioanalytical Chemistry. https://link.springer.com/article/10.1007/s00216-020-02898-w (accessed 2025-02-07).
(9) Jiménez-Lamana, J.; Marigliano, L.; Allouche, J.; Grassl, B.; Szpunar, J.; Reynaud, S. A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Anal. Chem. 2020, 92 (17), 11664–11672. https://doi.org/10.1021/acs.analchem.0c01536.
(10) Bolea-Fernandez, E.; Rua-Ibarz, A.; Velimirovic, M.; Tirez, K.; Vanhaecke, F. Detection of Microplastics Using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Operated in Single-Event Mode. J. Anal. At. Spectrom. 2020, 35 (3), 455–460. https://doi.org/10.1039/C9JA00379G.
(11) Lai, Y.; Dong, L.; Li, Q.; Li, P.; Hao, Z.; Yu, S.; Liu, J. Counting Nanoplastics in Environmental Waters by Single Particle Inductively Coupled Plasma Mass Spectroscopy after Cloud-Point Extraction and In Situ Labeling of Gold Nanoparticles. Environ. Sci. Technol. 2021, 55 (8), 4783–4791. https://doi.org/10.1021/acs.est.0c06839.
(12) Wang, T.; Li, B.; Zou, X.; Wang, Y.; Li, Y.; Xu, Y.; Mao, L.; Zhang, C.; Yu, W. Emission of Primary Microplastics in Mainland China: Invisible but Not Negligible. Water Research 2019, 162, 214–224. https://doi.org/10.1016/j.watres.2019.06.042.
(13) Hydrophilic interaction liquid chromatography method for measuring the composition of aquatic humic substances - ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0003267014011337 (accessed 2025-02-01).
(14) Matilainen, A.; Vepsäläinen, M.; Sillanpää, M. Natural Organic Matter Removal by Coagulation during Drinking Water Treatment: A Review. Advances in Colloid and Interface Science 2010, 159 (2), 189–197. https://doi.org/10.1016/j.cis.2010.06.007.
(15) Junaid, M.; Wang, J. Interaction of Nanoplastics with Extracellular Polymeric Substances (EPS) in the Aquatic Environment: A Special Reference to Eco-Corona Formation and Associated Impacts. Water Research 2021, 201, 117319. https://doi.org/10.1016/j.watres.2021.117319.
(16) Shams, M.; Alam, I.; Chowdhury, I. Aggregation and Stability of Nanoscale Plastics in Aquatic Environment. Water Research 2020, 171, 115401. https://doi.org/10.1016/j.watres.2019.115401.
(17) Liu, Y.; Huang, Z.; Zhou, J.; Tang, J.; Yang, C.; Chen, C.; Huang, W.; Dang, Z. Influence of Environmental and Biological Macromolecules on Aggregation Kinetics of Nanoplastics in Aquatic Systems. Water Research 2020, 186, 116316. https://doi.org/10.1016/j.watres.2020.116316.
(18) Xu, Y.; Ou, Q.; Li, X.; Wang, X.; van der Hoek, J. P.; Liu, G. Combined Effects of Photoaging and Natural Organic Matter on the Colloidal Stability of Nanoplastics in Aquatic Environments. Water Research 2022, 226, 119313. https://doi.org/10.1016/j.watres.2022.119313.
(19) Cao, T.; Zhao, M.; Zhang, T.; Chen, W. Weathering Pathways Differentially Affect Colloidal Stability of Nanoplastics. Environ. Sci.: Nano 2025, 12 (1), 232–240. https://doi.org/10.1039/D4EN00739E.
(20) Policy Scenarios for Eliminating Plastic Pollution by 2040. OECD. https://www.oecd.org/en/publications/policy-scenarios-for-eliminating-plastic-pollution-by-2040_76400890-en.html (accessed 2025-04-18).
(21) Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Science Advances 2017, 3 (7), e1700782. https://doi.org/10.1126/sciadv.1700782.
(22) Gigault, J.; El Hadri, H.; Nguyen, B.; Grassl, B.; Rowenczyk, L.; Tufenkji, N.; Feng, S.; Wiesner, M. Nanoplastics Are Neither Microplastics nor Engineered Nanoparticles. Nat. Nanotechnol. 2021, 16 (5), 501–507. https://doi.org/10.1038/s41565-021-00886-4.
(23) Zhang, Y.; Cheng, F.; Zhang, T.; Li, C.; Qu, J.; Chen, J.; Peijnenburg, W. J. G. M. Dissolved Organic Matter Enhanced the Aggregation and Oxidation of Nanoplastics under Simulated Sunlight Irradiation in Water. Environ. Sci. Technol. 2022, 56 (5), 3085–3095. https://doi.org/10.1021/acs.est.1c07129.
(24) Li, P.; Liu, J. Micro(Nano)Plastics in the Human Body: Sources, Occurrences, Fates, and Health Risks. Environ. Sci. Technol. 2024, 58 (7), 3065–3078. https://doi.org/10.1021/acs.est.3c08902.
(25) Rao, J. P.; Geckeler, K. E. Polymer Nanoparticles: Preparation Techniques and Size-Control Parameters. Progress in Polymer Science 2011, 36 (7), 887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001.
(26) Kukkola, A.; Chetwynd, A. J.; Krause, S.; Lynch, I. Beyond Microbeads: Examining the Role of Cosmetics in Microplastic Pollution and Spotlighting Unanswered Questions. Journal of Hazardous Materials 2024, 476, 135053. https://doi.org/10.1016/j.jhazmat.2024.135053.
(27) McDevitt, J. P.; Criddle, C. S.; Morse, M.; Hale, R. C.; Bott, C. B.; Rochman, C. M. Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act—A New Standard Can Facilitate Improved Policy. Environ. Sci. Technol. 2017, 51 (12), 6611–6617. https://doi.org/10.1021/acs.est.6b05812.
(28) Peeken, I.; Primpke, S.; Beyer, B.; Gütermann, J.; Katlein, C.; Krumpen, T.; Bergmann, M.; Hehemann, L.; Gerdts, G. Arctic Sea Ice Is an Important Temporal Sink and Means of Transport for Microplastic. Nat Commun 2018, 9 (1), 1505. https://doi.org/10.1038/s41467-018-03825-5.
(29) Tekman, M. B.; Krumpen, T.; Bergmann, M. Marine Litter on Deep Arctic Seafloor Continues to Increase and Spreads to the North at the HAUSGARTEN Observatory. Deep Sea Research Part I: Oceanographic Research Papers 2017, 120, 88–99. https://doi.org/10.1016/j.dsr.2016.12.011.
(30) Qian, N.; Gao, X.; Lang, X.; Deng, H.; Bratu, T. M.; Chen, Q.; Stapleton, P.; Yan, B.; Min, W. Rapid Single-Particle Chemical Imaging of Nanoplastics by SRS Microscopy. Proceedings of the National Academy of Sciences 2024, 121 (3), e2300582121. https://doi.org/10.1073/pnas.2300582121.
(31) Muhib, M. I. MICROPLASTIC POLLUTION FROM PLASTIC DRINKING BOTTLE, FOOD CONTAINER AND TAP WATER: EMERGING HEALTH CONCERN IN CONTEXT OF BANGLADESH. American International Journal of Nursing Education and Practice 2021, 2 (1), 15–18. https://doi.org/10.46545/aijnep.v2i1.248.
(32) Carney Almroth, B. M.; Åström, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N.-K. Quantifying Shedding of Synthetic Fibers from Textiles; a Source of Microplastics Released into the Environment. Environ Sci Pollut Res 2018, 25 (2), 1191–1199. https://doi.org/10.1007/s11356-017-0528-7.
(33) Fu, Z.; Wang, J. Current Practices and Future Perspectives of Microplastic Pollution in Freshwater Ecosystems in China. Science of The Total Environment 2019, 691, 697–712. https://doi.org/10.1016/j.scitotenv.2019.07.167.
(34) Li, H.-X.; Getzinger, G. J.; Ferguson, P. L.; Orihuela, B.; Zhu, M.; Rittschof, D. Effects of Toxic Leachate from Commercial Plastics on Larval Survival and Settlement of the Barnacle Amphibalanus Amphitrite. Environ. Sci. Technol. 2016, 50 (2), 924–931. https://doi.org/10.1021/acs.est.5b02781.
(35) Guerranti, C.; Martellini, T.; Perra, G.; Scopetani, C.; Cincinelli, A. Microplastics in Cosmetics: Environmental Issues and Needs for Global Bans. Environmental Toxicology and Pharmacology 2019, 68, 75–79. https://doi.org/10.1016/j.etap.2019.03.007.
(36) Xu, Y.; Ou, Q.; van der Hoek, J. P.; Liu, G.; Lompe, K. M. Photo-Oxidation of Micro- and Nanoplastics: Physical, Chemical, and Biological Effects in Environments. Environ. Sci. Technol. 2024, 58 (2), 991–1009. https://doi.org/10.1021/acs.est.3c07035.
(37) Balakrishnan, G.; Lagarde, F.; Chassenieux, C.; Martel, A.; Deniau, E.; Nicolai, T. Fate of Polystyrene and Polyethylene Nanoplastics Exposed to UV in Water. Environ. Sci.: Nano 2023, 10 (9), 2448–2458. https://doi.org/10.1039/D3EN00150D.
(38) Zhu, L.; Zhao, S.; Bittar, T. B.; Stubbins, A.; Li, D. Photochemical Dissolution of Buoyant Microplastics to Dissolved Organic Carbon: Rates and Microbial Impacts. Journal of Hazardous Materials 2020, 383, 121065. https://doi.org/10.1016/j.jhazmat.2019.121065.
(39) Okoffo, E. D.; Thomas, K. V. Quantitative Analysis of Nanoplastics in Environmental and Potable Waters by Pyrolysis-Gas Chromatography–Mass Spectrometry. Journal of Hazardous Materials 2024, 464, 133013. https://doi.org/10.1016/j.jhazmat.2023.133013.
(40) Xu, Y.; Ou, Q.; Jiao, M.; Liu, G.; van der Hoek, J. P. Identification and Quantification of Nanoplastics in Surface Water and Groundwater by Pyrolysis Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2022, 56 (8), 4988–4997. https://doi.org/10.1021/acs.est.1c07377.
(41) Castro-Castellon, A. T.; Horton, A. A.; Hughes, J. M. R.; Rampley, C.; Jeffers, E. S.; Bussi, G.; Whitehead, P. Ecotoxicity of Microplastics to Freshwater Biota: Considering Exposure and Hazard across Trophic Levels. Science of The Total Environment 2022, 816, 151638. https://doi.org/10.1016/j.scitotenv.2021.151638.
(42) Liu, W.; Liao, H.; Wei, M.; Junaid, M.; Chen, G.; Wang, J. Biological Uptake, Distribution and Toxicity of Micro(Nano)Plastics in the Aquatic Biota: A Special Emphasis on Size-Dependent Impacts. TrAC Trends in Analytical Chemistry 2024, 170, 117477. https://doi.org/10.1016/j.trac.2023.117477.
(43) Bhagat, J.; Nishimura, N.; Shimada, Y. Toxicological Interactions of Microplastics/Nanoplastics and Environmental Contaminants: Current Knowledge and Future Perspectives. Journal of Hazardous Materials 2021, 405, 123913. https://doi.org/10.1016/j.jhazmat.2020.123913.
(44) Yu, Y.; Mo, W. Y.; Luukkonen, T. Adsorption Behaviour and Interaction of Organic Micropollutants with Nano and Microplastics – A Review. Science of The Total Environment 2021, 797, 149140. https://doi.org/10.1016/j.scitotenv.2021.149140.
(45) Paluselli, A.; Fauvelle, V.; Galgani, F.; Sempéré, R. Phthalate Release from Plastic Fragments and Degradation in Seawater. Environ. Sci. Technol. 2019, 53 (1), 166–175. https://doi.org/10.1021/acs.est.8b05083.
(46) Cai, H.; Xu, E. G.; Du, F.; Li, R.; Liu, J.; Shi, H. Analysis of Environmental Nanoplastics: Progress and Challenges. Chemical Engineering Journal 2021, 410, 128208. https://doi.org/10.1016/j.cej.2020.128208.
(47) Montaño, M. D.; Olesik, J. W.; Barber, A. G.; Challis, K.; Ranville, J. F. Single Particle ICP-MS: Advances toward Routine Analysis of Nanomaterials. Anal Bioanal Chem 2016, 408 (19), 5053–5074. https://doi.org/10.1007/s00216-016-9676-8.
(48) Uptake and depuration of Ag nanoparticles versus Ag ions by zebrafish through dietary exposure: characterization of Ag nanoparticle formation and dissolution in vivo and toxicokinetic modeling - Environmental Science: Nano (RSC Publishing). https://pubs.rsc.org/en/content/articlelanding/2022/en/d2en00113f (accessed 2025-02-07).
(49) Mitrano, D. M.; Ranville, J. F.; Bednar, A.; Kazor, K.; Hering, A. S.; Higgins, C. P. Tracking Dissolution of Silver Nanoparticles at Environmentally Relevant Concentrations in Laboratory, Natural, and Processed Waters Using Single Particle ICP-MS (spICP-MS). Environ. Sci.: Nano 2014, 1 (3), 248–259. https://doi.org/10.1039/C3EN00108C.
(50) Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Higgins, C. P.; Ranville, J. F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83 (24), 9361–9369. https://doi.org/10.1021/ac201952t.
(51) Marques, S. S.; Segundo, M. A. Nanometrics Goes beyond the Size: Assessment of Nanoparticle Concentration and Encapsulation Efficiency in Nanocarriers. TrAC Trends in Analytical Chemistry 2024, 174, 117672. https://doi.org/10.1016/j.trac.2024.117672.
(52) Kałas, W. Should Nano-Particles Be Weighed or Counted? Technical Considerations to In Vitro Testing Originated from Corpuscular Nature of Nano-Particles. Arch. Immunol. Ther. Exp. 2021, 69 (1), 23. https://doi.org/10.1007/s00005-021-00623-8.
(53) Laborda, F.; Trujillo, C.; Lobinski, R. Analysis of Microplastics in Consumer Products by Single Particle-Inductively Coupled Plasma Mass Spectrometry Using the Carbon-13 Isotope. Talanta 2021, 221, 121486. https://doi.org/10.1016/j.talanta.2020.121486.
(54) Hendriks, L.; Mitrano, D. M. Direct Measurement of Microplastics by Carbon Detection via Single Particle ICP-TOFMS in Complex Aqueous Suspensions. Environ. Sci. Technol. 2023, 57 (18), 7263–7272. https://doi.org/10.1021/acs.est.3c01192.
(55) Lai, Y.; Dong, L.; Li, Q.; Li, P.; Hao, Z.; Yu, S.; Liu, J. Counting Nanoplastics in Environmental Waters by Single Particle Inductively Coupled Plasma Mass Spectroscopy after Cloud-Point Extraction and In Situ Labeling of Gold Nanoparticles. Environ. Sci. Technol. 2021, 55 (8), 4783–4791. https://doi.org/10.1021/acs.est.0c06839.
(56) Size-Dependent Uptake and Depuration of Nanoplastics in Tilapia (Oreochromis niloticus) and Distinct Intestinal Impacts | Environmental Science & Technology. https://pubs.acs.org/doi/10.1021/acs.est.2c08059 (accessed 2025-03-26).
(57) Jiménez-Lamana, J.; Marigliano, L.; Allouche, J.; Grassl, B.; Szpunar, J.; Reynaud, S. A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Anal. Chem. 2020, 92 (17), 11664–11672. https://doi.org/10.1021/acs.analchem.0c01536.
(58) Catarino, A. I.; Frutos, A.; Henry, T. B. Use of Fluorescent-Labelled Nanoplastics (NPs) to Demonstrate NP Absorption Is Inconclusive without Adequate Controls. Science of The Total Environment 2019, 670, 915–920. https://doi.org/10.1016/j.scitotenv.2019.03.194.
(59) Valsesia, A.; Quarato, M.; Ponti, J.; Fumagalli, F.; Gilliland, D.; Colpo, P. Combining Microcavity Size Selection with Raman Microscopy for the Characterization of Nanoplastics in Complex Matrices. Sci Rep 2021, 11 (1), 362. https://doi.org/10.1038/s41598-020-79714-z.
(60) Budimir, S.; Setälä, O.; Lehtiniemi, M. Effective and Easy to Use Extraction Method Shows Low Numbers of Microplastics in Offshore Planktivorous Fish from the Northern Baltic Sea. Marine Pollution Bulletin 2018, 127, 586–592. https://doi.org/10.1016/j.marpolbul.2017.12.054.
(61) Wesch, C.; Bredimus, K.; Paulus, M.; Klein, R. Towards the Suitable Monitoring of Ingestion of Microplastics by Marine Biota: A Review. Environmental Pollution 2016, 218, 1200–1208. https://doi.org/10.1016/j.envpol.2016.08.076.
(62) Lusher, A. L.; Welden, N. A.; Sobral, P.; Cole, M. Sampling, Isolating and Identifying Microplastics Ingested by Fish and Invertebrates. Anal. Methods 2017, 9 (9), 1346–1360. https://doi.org/10.1039/C6AY02415G.
(63) Karami, A.; Golieskardi, A.; Choo, C. K.; Romano, N.; Ho, Y. B.; Salamatinia, B. A High-Performance Protocol for Extraction of Microplastics in Fish. Science of The Total Environment 2017, 578, 485–494. https://doi.org/10.1016/j.scitotenv.2016.10.213.
(64) Xiong, X.; Zhang, K.; Chen, X.; Shi, H.; Luo, Z.; Wu, C. Sources and Distribution of Microplastics in China’s Largest Inland Lake – Qinghai Lake. Environmental Pollution 2018, 235, 899–906. https://doi.org/10.1016/j.envpol.2017.12.081.
(65) Daniel, D. B.; Ashraf, P. M.; Thomas, S. N. Abundance, Characteristics and Seasonal Variation of Microplastics in Indian White Shrimps (Fenneropenaeus Indicus) from Coastal Waters off Cochin, Kerala, India. Science of The Total Environment 2020, 737, 139839. https://doi.org/10.1016/j.scitotenv.2020.139839.
(66) Dehaut, A.; Cassone, A.-L.; Frère, L.; Hermabessiere, L.; Himber, C.; Rinnert, E.; Rivière, G.; Lambert, C.; Soudant, P.; Huvet, A.; Duflos, G.; Paul-Pont, I. Microplastics in Seafood: Benchmark Protocol for Their Extraction and Characterization. Environmental Pollution 2016, 215, 223–233. https://doi.org/10.1016/j.envpol.2016.05.018.
(67) Duan, J.; Han, J.; Zhou, H.; Lau, Y. L.; An, W.; Wei, P.; Cheung, S. G.; Yang, Y.; Tam, N. F. Development of a Digestion Method for Determining Microplastic Pollution in Vegetal-Rich Clayey Mangrove Sediments. Science of The Total Environment 2020, 707, 136030. https://doi.org/10.1016/j.scitotenv.2019.136030.
(68) Catarino, A. I.; Thompson, R.; Sanderson, W.; Henry, T. B. Development and Optimization of a Standard Method for Extraction of Microplastics in Mussels by Enzyme Digestion of Soft Tissues. Environmental Toxicology and Chemistry 2017, 36 (4), 947–951. https://doi.org/10.1002/etc.3608.
(69) Jiang, X.; Tian, L.; Ma, Y.; Ji, R. Quantifying the Bioaccumulation of Nanoplastics and PAHs in the Clamworm Perinereis Aibuhitensis. Science of The Total Environment 2019, 655, 591–597. https://doi.org/10.1016/j.scitotenv.2018.11.227.
(70) Li, J.; Qu, X.; Su, L.; Zhang, W.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Mussels along the Coastal Waters of China. Environmental Pollution 2016, 214, 177–184. https://doi.org/10.1016/j.envpol.2016.04.012.
(71) Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental Fate and Impacts of Microplastics in Soil Ecosystems: Progress and Perspective. Science of The Total Environment 2020, 708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841.
(72) Song, Y.; Cao, C.; Qiu, R.; Hu, J.; Liu, M.; Lu, S.; Shi, H.; Raley-Susman, K. M.; He, D. Uptake and Adverse Effects of Polyethylene Terephthalate Microplastics Fibers on Terrestrial Snails (Achatina Fulica) after Soil Exposure. Environmental Pollution 2019, 250, 447–455. https://doi.org/10.1016/j.envpol.2019.04.066.
(73) Kim, H. M.; Lee, D.-K.; Long, N. P.; Kwon, S. W.; Park, J. H. Uptake of Nanopolystyrene Particles Induces Distinct Metabolic Profiles and Toxic Effects in Caenorhabditis Elegans. Environmental Pollution 2019, 246, 578–586. https://doi.org/10.1016/j.envpol.2018.12.043.
(74) Au, S. Y.; Lee, C. M.; Weinstein, J. E.; van den Hurk, P.; Klaine, S. J. Trophic Transfer of Microplastics in Aquatic Ecosystems: Identifying Critical Research Needs. Integrated Environmental Assessment and Management 2017, 13 (3), 505–509. https://doi.org/10.1002/ieam.1907.
(75) Miranda, D. de A.; de Carvalho-Souza, G. F. Are We Eating Plastic-Ingesting Fish? Marine Pollution Bulletin 2016, 103 (1), 109–114. https://doi.org/10.1016/j.marpolbul.2015.12.035.
(76) Ghosh, T. Microplastics Bioaccumulation in Fish: Its Potential Toxic Effects on Hematology, Immune Response, Neurotoxicity, Oxidative Stress, Growth, and Reproductive Dysfunction. Toxicology Reports 2025, 14, 101854. https://doi.org/10.1016/j.toxrep.2024.101854.
(77) Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio Rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50 (7), 4054–4060. https://doi.org/10.1021/acs.est.6b00183.
(78) Habumugisha, T.; Zhang, Z.; Yan, C.; Ren, H.-Y.; Rehman, A.; Uwamahoro, S.; Zhang, X. Size-Dependent Dynamics and Tissue-Specific Distribution of Nano-Plastics in Danio Rerio: Accumulation and Depuration. Journal of Hazardous Materials 2025, 484, 136775. https://doi.org/10.1016/j.jhazmat.2024.136775.
(79) Jeong, A.; Park, S. J.; Lee, E. J.; Kim, K. W. Nanoplastics Exacerbate Parkinson’s Disease Symptoms in C. Elegans and Human Cells. Journal of Hazardous Materials 2024, 465, 133289. https://doi.org/10.1016/j.jhazmat.2023.133289.
(80) Jeong, C.-B.; Won, E.-J.; Kang, H.-M.; Lee, M.-C.; Hwang, D.-S.; Hwang, U.-K.; Zhou, B.; Souissi, S.; Lee, S.-J.; Lee, J.-S. Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-P38 Activation in the Monogonont Rotifer (Brachionus Koreanus). Environ. Sci. Technol. 2016, 50 (16), 8849–8857. https://doi.org/10.1021/acs.est.6b01441.
(81) Afrose, S.; Tran, T. K. A.; O’Connor, W.; Pannerselvan, L.; Carbery, M.; Fielder, S.; Subhaschandrabose, S.; Palanisami, T. Organ-Specific Distribution and Size-Dependent Toxicity of Polystyrene Nanoplastics in Australian Bass (Macquaria Novemaculeata). Environmental Pollution 2024, 341, 122996. https://doi.org/10.1016/j.envpol.2023.122996.
(82) Théogène Habumugisha; Zixing Zhang; J. Ndayishimiye; François Nkinahamira; Constance Uwizewe; Eric Cyubahiro; Abdul Rehman; Changzhou Yan; Xian Zhang. Qualitative and Quantitative Analysis of Accumulation and Biodistribution of Polystyrene Nanoplastics in Zebrafish (Danio Rerio) via Artificial Freshwater. Environmental Science: Nano 2023. https://doi.org/10.1039/d3en00017f.
(83) Habumugisha, T.; Zhang, Z.; Fang, C.; Yan, C.; Zhang, X. Uptake, Bioaccumulation, Biodistribution and Depuration of Polystyrene Nanoplastics in Zebrafish (Danio Rerio). Science of The Total Environment 2023, 893, 164840. https://doi.org/10.1016/j.scitotenv.2023.164840.
(84) Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio Rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50 (7), 4054–4060. https://doi.org/10.1021/acs.est.6b00183.
(85) Wu, D.; Lu, X.; Dong, L.-X.; Tian, J.; Deng, J.; Wei, L.; Wen, H.; Zhong, S.; Jiang, M. Nano Polystyrene Microplastics Could Accumulate in Nile Tilapia (Oreochromis Niloticus): Negatively Impacts on the Intestinal and Liver Health through Water Exposure. Journal of Environmental Sciences 2024, 137, 604–614. https://doi.org/10.1016/j.jes.2023.02.018.
(86) Clark, N. J.; Khan, F. R.; Crowther, C.; Mitrano, D. M.; Thompson, R. C. Uptake, Distribution and Elimination of Palladium-Doped Polystyrene Nanoplastics in Rainbow Trout (Oncorhynchus Mykiss) Following Dietary Exposure. Science of The Total Environment 2023, 854, 158765. https://doi.org/10.1016/j.scitotenv.2022.158765.
(87) Integrated response of growth, antioxidant defense and isotopic composition to microplastics in juvenile guppy (Poecilia reticulata) - ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0304389420310335 (accessed 2025-06-15).
(88) Liu, Y.; Qiu, X.; Xu, X.; Takai, Y.; Ogawa, H.; Shimasaki, Y.; Oshima, Y. Uptake and Depuration Kinetics of Microplastics with Different Polymer Types and Particle Sizes in Japanese Medaka (Oryzias Latipes). Ecotoxicology and Environmental Safety 2021, 212, 112007. https://doi.org/10.1016/j.ecoenv.2021.112007.
(89) Assas, M.; Qiu, X.; Chen, K.; Ogawa, H.; Xu, H.; Shimasaki, Y.; Oshima, Y. Bioaccumulation and Reproductive Effects of Fluorescent Microplastics in Medaka Fish. Marine Pollution Bulletin 2020, 158, 111446. https://doi.org/10.1016/j.marpolbul.2020.111446.
(90) Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish - ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0048969719321898?via%3Dihub (accessed 2025-06-15).
(91) Ding, J.; Zhang, S.; Razanajatovo, R. M.; Zou, H.; Zhu, W. Accumulation, Tissue Distribution, and Biochemical Effects of Polystyrene Microplastics in the Freshwater Fish Red Tilapia (Oreochromis Niloticus). Environmental Pollution 2018, 238, 1–9. https://doi.org/10.1016/j.envpol.2018.03.001.
(92) Duan, Z.; Cheng, H.; Duan, X.; Zhang, H.; Wang, Y.; Gong, Z.; Zhang, H.; Sun, H.; Wang, L. Diet Preference of Zebrafish (Danio Rerio) for Bio-Based Polylactic Acid Microplastics and Induced Intestinal Damage and Microbiota Dysbiosis. Journal of Hazardous Materials 2022, 429, 128332. https://doi.org/10.1016/j.jhazmat.2022.128332.
(93) Yang, L.; Tang, B. Z.; Wang, W.-X. Near-Infrared-II In Vivo Visualization and Quantitative Tracking of Micro/Nanoplastics in Fish. ACS Nano 2023, 17 (19), 19410–19420. https://doi.org/10.1021/acsnano.3c07571.
(94) Habumugisha, T.; Zhang, Z.; Yan, C.; Ren, H.-Y.; Rehman, A.; Uwamahoro, S.; Zhang, X. Size-Dependent Dynamics and Tissue-Specific Distribution of Nano-Plastics in Danio Rerio: Accumulation and Depuration. Journal of Hazardous Materials 2025, 484, 136775. https://doi.org/10.1016/j.jhazmat.2024.136775.
(95) Wang, X.; Zheng, H.; Zhao, J.; Luo, X.; Wang, Z.; Xing, B. Photodegradation Elevated the Toxicity of Polystyrene Microplastics to Grouper (Epinephelus Moara) through Disrupting Hepatic Lipid Homeostasis. Environ. Sci. Technol. 2020, 54 (10), 6202–6212. https://doi.org/10.1021/acs.est.9b07016.
(96) Qiao, R.; Deng, Y.; Zhang, S.; Wolosker, M. B.; Zhu, Q.; Ren, H.; Zhang, Y. Accumulation of Different Shapes of Microplastics Initiates Intestinal Injury and Gut Microbiota Dysbiosis in the Gut of Zebrafish. Chemosphere 2019, 236, 124334. https://doi.org/10.1016/j.chemosphere.2019.07.065.
(97) Jo, A.-H.; Yu, Y.-B.; Choi, J.-H.; Lee, J.-H.; Choi, C. Y.; Kang, J.-C.; Kim, J.-H. Microplastics Induce Toxic Effects in Fish: Bioaccumulation, Hematological Parameters and Antioxidant Responses. Chemosphere 2025, 375, 144253. https://doi.org/10.1016/j.chemosphere.2025.144253.
(98) Zhang, X.; Xia, M.; Su, X.; Yuan, P.; Li, X.; Zhou, C.; Wan, Z.; Zou, W. Photolytic Degradation Elevated the Toxicity of Polylactic Acid Microplastics to Developing Zebrafish by Triggering Mitochondrial Dysfunction and Apoptosis. Journal of Hazardous Materials 2021, 413, 125321. https://doi.org/10.1016/j.jhazmat.2021.125321.
(99) Hou, W.-C.; He, C.-J.; Wang, Y.-S.; Wang, D. K.; Zepp, R. G. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon. Environ. Sci. Technol. 2016, 50 (7), 3494–3502. https://doi.org/10.1021/acs.est.5b04727.
(100) Jing-Rong Chen. Using Single-Particle ICP-MS Combining with Pretreatment and Post-Au Nanoparticle Labeling to Detect Nanoplastics in Fish Samples. July 2023.
(101) Johnson, M. E.; Montoro Bustos, A. R.; Winchester, M. R. Practical Utilization of spICP-MS to Study Sucrose Density Gradient Centrifugation for the Separation of Nanoparticles. Anal Bioanal Chem 2016, 408 (27), 7629–7640. https://doi.org/10.1007/s00216-016-9844-x.
(102) Duan, J.; Li, Y.; Gao, J.; Cao, R.; Shang, E.; Zhang, W. ROS-Mediated Photoaging Pathways of Nano- and Micro-Plastic Particles under UV Irradiation. Water Research 2022, 216, 118320. https://doi.org/10.1016/j.watres.2022.118320.
(103) Liu, Y.; Huang, Z.; Zhou, J.; Tang, J.; Yang, C.; Chen, C.; Huang, W.; Dang, Z. Influence of Environmental and Biological Macromolecules on Aggregation Kinetics of Nanoplastics in Aquatic Systems. Water Research 2020, 186, 116316. https://doi.org/10.1016/j.watres.2020.116316.
(104) Xu, Y.; Ou, Q.; Li, X.; Wang, X.; van der Hoek, J. P.; Liu, G. Combined Effects of Photoaging and Natural Organic Matter on the Colloidal Stability of Nanoplastics in Aquatic Environments. Water Research 2022, 226, 119313. https://doi.org/10.1016/j.watres.2022.119313.
(105) Zhou, X.-X.; He, S.; Gao, Y.; Chi, H.-Y.; Wang, D.-J.; Li, Z.-C.; Yan, B. Quantitative Analysis of Polystyrene and Poly(Methyl Methacrylate) Nanoplastics in Tissues of Aquatic Animals. Environ. Sci. Technol. 2021, 55 (5), 3032–3040. https://doi.org/10.1021/acs.est.0c08374.
(106) Zhang, M.; Hou, J.; Xia, J.; Zeng, Y.; Miao, L. Influence of Natural Organic Matters on Fate of Polystyrene Nanoplastics in Porous Media. Science of The Total Environment 2023, 893, 164504. https://doi.org/10.1016/j.scitotenv.2023.164504.
(107) Sun, H.; Jiao, R.; Yu, J.; Wang, D. Combined Effects of Particle Size and Humic Acid Corona on the Aggregation Kinetics of Nanoplastics in Aquatic Environments. Science of The Total Environment 2023, 901, 165987. https://doi.org/10.1016/j.scitotenv.2023.165987.
(108) Mirshafiee, V.; Mahmoudi, M.; Lou, K.; Cheng, J.; L. Kraft, M. Protein Corona Significantly Reduces Active Targeting Yield. 2013. https://doi.org/10.1039/C3CC37307J.
(109) Beddoes, C. M.; Case, C. P.; Briscoe, W. H. Understanding Nanoparticle Cellular Entry: A Physicochemical Perspective. Advances in Colloid and Interface Science 2015, 218, 48–68. https://doi.org/10.1016/j.cis.2015.01.007.
(110) Guindani, C.; Feuser, P. E.; Cordeiro, A. P.; de Meneses, A. C.; Possato, J. C.; da Silva Abel, J.; Machado-de-Ávila, R. A.; Sayer, C.; de Araújo, P. H. H. Bovine Serum Albumin Conjugation on Poly(Methyl Methacrylate) Nanoparticles for Targeted Drug Delivery Applications. Journal of Drug Delivery Science and Technology 2020, 56, 101490. https://doi.org/10.1016/j.jddst.2019.101490.
(111) Juneja, R.; Roy, I. Surface Modified PMMA Nanoparticles with Tunable Drug Release and Cellular Uptake. 2014. https://doi.org/10.1039/C4RA07939F.
(112) Habumugisha, T.; Zhang, Z.; Ndayishimiye, J. C.; Nkinahamira, F.; Uwizewe, C.; Cyubahiro, E.; Rehman, A.; Yan, C.; Zhang, X. Qualitative and Quantitative Analysis of Accumulation and Biodistribution of Polystyrene Nanoplastics in Zebrafish (Danio Rerio) via Artificial Freshwater. Environ. Sci.: Nano 2023, 10 (8), 2141–2156. https://doi.org/10.1039/D3EN00017F.
(113) Habumugisha, T.; Zhang, Z.; Fang, C.; Yan, C.; Zhang, X. Uptake, Bioaccumulation, Biodistribution and Depuration of Polystyrene Nanoplastics in Zebrafish (Danio Rerio). Science of The Total Environment 2023, 893, 164840. https://doi.org/10.1016/j.scitotenv.2023.164840.
(114) Qiao, R.; Lu, K.; Deng, Y.; Ren, H.; Zhang, Y. Combined Effects of Polystyrene Microplastics and Natural Organic Matter on the Accumulation and Toxicity of Copper in Zebrafish. Science of The Total Environment 2019, 682, 128–137. https://doi.org/10.1016/j.scitotenv.2019.05.163.
(115) Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio Rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50 (7), 4054–4060. https://doi.org/10.1021/acs.est.6b00183.
(116) Brandts, I.; Cánovas, M.; Tvarijonaviciute, A.; Llorca, M.; Vega, A.; Farré, M.; Pastor, J.; Roher, N.; Teles, M. Nanoplastics Are Bioaccumulated in Fish Liver and Muscle and Cause DNA Damage after a Chronic Exposure. Environmental Research 2022, 212, 113433. https://doi.org/10.1016/j.envres.2022.113433.
(117) Sun, Y.; Zhao, X.; Sui, Q.; Sun, X.; Zhu, L.; Booth, A. M.; Chen, B.; Qu, K.; Xia, B. Polystyrene Nanoplastics Affected the Nutritional Quality of Chlamys Farreri through Disturbing the Function of Gills and Physiological Metabolism: Comparison with Microplastics. Science of The Total Environment 2024, 910, 168457. https://doi.org/10.1016/j.scitotenv.2023.168457.
(118) Deng, J.; Zeng, X.; Li, J.; Luo, L.; Yang, Y.; Luan, T. Single-Cell Transcriptomic Analysis Reveals Heterogeneity of the Patterns of Responsive Genes and Cell Communications in Liver Cell Populations of Zebrafish Exposed to Polystyrene Nanoplastics. Science of The Total Environment 2023, 889, 164082. https://doi.org/10.1016/j.scitotenv.2023.164082.
(119) Ašmonaitė, G.; Sundh, H.; Asker, N.; Carney Almroth, B. Rainbow Trout Maintain Intestinal Transport and Barrier Functions Following Exposure to Polystyrene Microplastics. Environ. Sci. Technol. 2018, 52 (24), 14392–14401. https://doi.org/10.1021/acs.est.8b04848.
(120) Kumar, M.; Kulkarni, P.; Liu, S.; Chemuturi, N.; Shah, D. K. Nanoparticle Biodistribution Coefficients: A Quantitative Approach for Understanding the Tissue Distribution of Nanoparticles. Advanced Drug Delivery Reviews 2023, 194, 114708. https://doi.org/10.1016/j.addr.2023.114708.
(121) Al-Sid-Cheikh, M.; Rouleau, C.; Bussolaro, D.; Oliveira Ribeiro, C. A.; Pelletier, E. Tissue Distribution of Radiolabeled 110mAg Nanoparticles in Fish: Arctic Charr (Salvelinus Alpinus). Environ. Sci. Technol. 2019, 53 (20), 12043–12053. https://doi.org/10.1021/acs.est.9b04010.
(122) Al-Sid-Cheikh, M.; Rouleau, C.; Bussolaro, D.; Oliveira Ribeiro, C. A.; Pelletier, E. Tissue Distribution of Radiolabeled 110mAg Nanoparticles in Fish: Arctic Charr (Salvelinus Alpinus). Environ. Sci. Technol. 2019, 53 (20), 12043–12053. https://doi.org/10.1021/acs.est.9b04010.
(123) Hao, T.; Gao, Y.; Li, Z.-C.; Zhou, X.-X.; Yan, B. Size-Dependent Uptake and Depuration of Nanoplastics in Tilapia (Oreochromis Niloticus) and Distinct Intestinal Impacts. Environ. Sci. Technol. 2023, 57 (7), 2804–2812. https://doi.org/10.1021/acs.est.2c08059.
(124) Handy, R. D.; Henry, T. B.; Scown, T. M.; Johnston, B. D.; Tyler, C. R. Manufactured Nanoparticles: Their Uptake and Effects on Fish—a Mechanistic Analysis. Ecotoxicology 2008, 17 (5), 396–409. https://doi.org/10.1007/s10646-008-0205-1.
(125) Bilberg, K.; Hovgaard, M. B.; Besenbacher, F.; Baatrup, E. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio Rerio). J Toxicol 2012, 2012, 293784. https://doi.org/10.1155/2012/293784.
(126) Lu, K.; Dong, S.; Petersen, E. J.; Niu, J.; Chang, X.; Wang, P.; Lin, S.; Gao, S.; Mao, L. Biological Uptake, Distribution, and Depuration of Radio-Labeled Graphene in Adult Zebrafish: Effects of Graphene Size and Natural Organic Matter. ACS Publications. https://doi.org/10.1021/acsnano.6b07982.
校內:2030-08-21公開