簡易檢索 / 詳目顯示

研究生: 溫偉智
Wun, Wei-jhih
論文名稱: 電流穩流模組系統模型之建立與分析
System Modeling and Analysis of Current Regulation Module
指導教授: 林瑞禮
Lin, Ray-Lee
陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 84
中文關鍵詞: 放電加工機錯相式電流穩流
外文關鍵詞: current regulation, interleaved, electrical discharge machine
相關次數: 點閱:179下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文擬對一應用於放電加工機之電流穩流模組(Current Regulation Module : CRM)電路進行系統建模與分析。藉由推導及驗證單相及四相之電流穩流模組電路系統之小訊號模型的開迴路轉移函數,分析系統特性、設計閉迴路系統之補償器。
    本論文使用三端點之PWM架構推導諸開迴路小訊號轉移函數,分別建立單相及四相之電流穩流模組電路系統之小訊號模型方塊圖。同時,利用數學軟體MathCAD繪出諸開迴路小訊號轉移函數的波德圖曲線,與經由電路模擬軟體SIMPLIS所獲得之開迴路的波德圖曲線作比對驗證。再根據所推導之開迴路小訊號轉移函數設計閉迴路系統之補償器。
    最後以PSM1735增益相位分析儀,建立增益-相位量測平台,以量測單相及四相電流穩流模組雛型電路之開迴路各轉移函數,驗證其系統之特性。

    This thesis presents the system modeling and analysis of the single-phase and the interleaved four-phase current regulation modules, for use in the electrical discharge machine. With the derivation and validation of the open-loop transfer functions for the single-phase and the interleaved four-phase current regulation modules, the system characteristic analysis and the compensator design have been developed.
    Based on the equivalent circuit models of the three-terminal PWM switching cell, the small-signal models of the single-phase and the interleaved four-phase current regulation modules have been proposed to compared with the SIMPLIS® simulation results. Moreover, the compensator has been designed in order to obtain sufficient DC gain, bandwidth, gain margin, and phase margin for the interleaved four-phase CCM CRM by utilizing the derived open-loop transfer functions.
    Finally, the Gain/Phase measurement station has been built by using the PSM1735, Gain/Phase Analyzer, to validate the derived open-loop transfer functions for the system characteristic analysis.

    Chapter 1. INTRODUCTION 1 1.1 Background 1 1.2 Motivation 8 1.3 Thesis Outline 10 Chapter 2. MODELING OF SINGLE-PHASE CCM CURRENT REGULATION MODULE 11 2.1 Introduction 11 2.2 DC and Small-Signal Analyses of Single-Phase CCM Current Regulation Module 12 2.2.1. DC Analysis 15 2.2.2. Open-Loop Control-to-Output 15 2.2.3. Open-Loop Line-to-Output 17 2.2.4. Open-Loop Output Admittance 18 2.2.5. Open-Loop Input Impedance 19 2.3 Validations with SIMPLIS® Simulation 20 2.3.1. Open-Loop Control-to-Output 21 2.3.2. Open-Loop Line-to-Output 23 2.3.3. Open-Loop Output Admittance 25 2.3.4. Open-loop Input Impedance 27 2.4 Summary 29 Chapter 3. MODELING OF INTERLEAVED FOUR-PHASE CCM CURRENT REGULATION MODULE 30 3.1 Introduction 30 3.2 DC and Small-Signal Analyses of Interleaved Four-Phase CCM Current Regulation Module 31 3.2.1. DC Analysis 33 3.2.2. Open-Loop Control-to-Output 34 3.2.3. Open-Loop Line-to-Output 35 3.2.4. Open-Loop Output Admittance 37 3.2.5. Open-Loop Input Impedance 38 3.3 Validations with SIMPLIS® Simulation 39 3.3.1. Open-Loop Control-to-Output 40 3.3.2. Open-Loop Line-to-Output 42 3.3.3. Open-Loop Output Admittance 44 3.3.4. Open-Loop Input Impedance 46 3.4 Comparison between Single-Phase and Interleaved Four-Phase modules 48 3.5 Compensator Design 54 3.6 Summary 61 Chapter 4. EXPERIMENTAL RESULTS 62 4.1 Introduction 62 4.2 Experimental Results of Single-Phase Prototype Circuit 63 4.3 Experimental Results of Interleaved Four-phase Prototype Circuit 69 4.4 Summary 75 Chapter 5. CONCLUSION AND FUTURE WORK 76 Appendix A. MATHCAD DESIGN PROGRAMS 78 A.1 Transfer Functions of Signal-Phase Current Regulation Module 78 A.2 Transfer Functions of Interleaved Four-Phase Current Regulation Module 79 A.3 Compensator Design for Interleaved Four-Phase Current Regulation Module 80 REFERENCES 82

    [1] Carl Sommer and Steve Sommer, Complete EDM Handbook, Reliable EDM, Inc., 2005. http://www.reliableedm.com.
    [2] Hoang Vinh Sinh, Banh Tien Long, and Nguyen Cong Hien, “A study of method to control EDM process,” http://www.ritsumei.ac.jp/acd/cg/se/rt/mems/report/
    HUT-RITS-2004/Proc/HoangVinhSinh.pdf
    [3] A. Behrens, M. P. Witzak, and F. L. Bruhns, “Control and prediction of course of spark erosion process on spark erosion machine,” German Patent DE19 512 291, 1995.
    [4] A. Behrens, J. Ginzel, and F. L. Bruhns, “Arc detection in electro-discharge machining,” ISEM XIII Conf. Proc., pp. 283–294, 2001.
    [5] N. Saito, K. Kobayashi and T. Oizumi, “Method and apparatus for electrical discharge machining,” U.S. Patent 3 999 028, 1976.
    [6] T. Furukawa, “EDM pulse generator with a variable output inductor for producing pulse with gradually rising edges,” U.S. Patent 4 441 005, 1984.
    [7] Y. Ozaki, K. Tsurumoto, T. Yatomi and M. Yamamoto, “Electrical discharge machine with control of the machining pulse’s current value in accordance with the delay time,” U.S. Patent 4 695 696, 1987.
    [8] B. Sen, N. Kiyawat, P. K. Singh, S. Mitra, J. H. Ye, and P. Purkait, “Developments in electric power supply configurations for electrical-discharge-machining (EDM),” The Fifth International Conference on Power Electronics and Drive Systems, vol. 1, pp. 659-664, Nov. 2003.
    [9] M. T. Zhang, M. M. Jovanovic, and F. C. Lee, “Design considerations for low-voltage on-board DC/DC modules for next generations of data processing circuits,” IEEE Trans. on Power Electronics, vol. 11, no. 2, pp. 328-337, March 1996.
    [10] X. Zhou, P. L. Wong, P. Xu, F. C. Lee, and A. Q. Huang, “Investigation of candidate VRM topologies for future microprocessors,” IEEE Trans. on Power Electronics, vol. 15, no. 6, pp. 1172-1182, Nov 2000.
    [11] F. Zhang, J.M. Zhang, D. M. Xu, Z. Qian, “A novel high performance voltage regulator module,” in Proc. IEEE APEC, 2001, pp. 258-261.
    [12] M. Ye, P. Xu, B. Yang, and F. C. Lee, “Investigation of topology candidates for 48V VRM,” in Proc. IEEE APEC, 2002, pp. 699-705.
    [13] R. Casanueva, L. A. Chiquito, F. J. Azcondo, and S. Bracho, “Current source LCC resonant converter for an EDM power supply,” in Proc. IEEE IECON, 2001, pp. 1027-1032.
    [14] R. Casanueva, F. J. Azcondo, C. Branas and S. Bracho, “Analysis, design and experimental results of a high-frequency power supply for spark erosion,” IEEE Trans. on Power Electronics, vol. 20, pp. 361-369, Mar 2005.
    [15] R. Casanueva, Azcondo, F. J. Azcondo, and C. Branas, “A new bipolar power supply for spark erosion based on a series-parallel resonant inverter,” IEEE Trans. on Power Electronic, pp. 1904-1909, 24-28 Feb. 2008.
    [16] C. C. Hsu, “Buck-based current source with energy-recovery scheme for electrical discharge machine,” M.S. Thesis, National Cheng Kung University, Nov. 2006.
    [17] R. L. Lin, C. C. Hsu, and S. K. Changchien, “Interleaved four-phase buck-based current source with center-tapped energy-recovery scheme for electrical discharge machining,” IEEE Trans. on Power Electronic, pp. 1536-1542, 24-28 Feb. 2008.
    [18] P. L. Wong, Performance improvements of multi-channel interleaving voltage regulator modules with integrated coupling inductors, Ph.D. Dissertation, Virginia Tech, 2001.
    [19] V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch part I: continuous conduction mode,” IEEE Trans. on Power Electronic, vol. 26, No. 3, May 1990.
    [20] E. Vandijk, J. H. N. Spruijt, D. M. Osullivan, and J. B. Klaassens, “PWM-switch modeling of DC-DC converters,” IEEE Trans. on Power Electronic, vol. 10, pp. 659-665, 1995.

    下載圖示 校內:2010-09-11公開
    校外:2010-09-11公開
    QR CODE