簡易檢索 / 詳目顯示

研究生: 戴宏明
Dai, Hung-Ming
論文名稱: 可溶性可交聯型聚醯胺之製備與其性質之研究
The Preparation and Properties of Soluble and Crosslinkable Polyamide Films
指導教授: 許聯崇
Hsu, Lien-chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 114
中文關鍵詞: 可溶性高分子化學交聯熱交聯芳香族聚醯胺鄰苯二甲醯亞胺馬來酰亞胺
外文關鍵詞: solube polymer, crosslinking, aromatic polyamide, phthalimide, maleimide
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用將龐大基團 (imide ring) 結構導入二酸單體結構中,以期望能以此類單體合成出一可溶性之聚醯胺。分別利用tetrafluorophthalic anhydride 和 maleic anhydride 與 5-aminophthalic acid hydrate 反應合成出我們所想要結構的單體 5-tetrafluorophthalimidoisophthalic acid (PIA) 和 maleimide phthalic acid (MIPA) 。並利用其和其餘 3 個單體去合成我們所期望得到聚醯胺,分別為二酸單體 5-hydroxyisophthalic acid (HIA) 、 二胺單體2,2-bis[4-(4-aminophenoxy)-phenyl]hexafluoropropane (6FPPA) 、2,2-bistrifluoromethyl benzidine (TFDB) ,並利用FT-IR、NMR去鑑定其結構正確性,得到其固有黏度為0.60 ~ 0.85 (dL/g),且其可溶於高極性溶劑 NMP、DMAc、DMF、DMSO中。
    利用所得到之化學交聯型之聚醯胺 (PIA+HIA+6FPPA & PIA+HIA+TFDB) 與DMAc配成2 wt% 之聚醯胺溶液,加入交聯劑(1,4-phenylene diisocynate) 和催化劑 (triethylamine) ,在130 oC下反應3小時並除去溶劑以得到化學交聯型之聚醯胺薄膜。利用熱交聯型之聚醯胺 (PIA+MIPA+6FPPA & PIA+MIPA+TFDB) 與DMAc配成2 wt% 之聚醯胺溶液,利用升溫參數 : 升溫速率5 oC/min ,升溫至 150 oC 持溫 1小時, 180 oC 持溫 1 小時, 220 oC 持溫 2 小時, 260 oC 持溫 2 小時,即可得到熱交聯型之聚醯胺薄膜。
    分別利用化學交聯型聚醯胺與熱交聯型聚醯胺薄膜去測量TGA、TMA並和未交聯聚醯胺薄膜作比較,可得到化學交聯型薄膜在交聯後之熱烈解溫度提升了約10 oC, Tg提升了約5 oC ,CTE則下降了15 ~ 40 (ppm/ oC) ;而熱交聯型薄膜之熱烈解溫度提升了50 ~ 60 oC,
    Tg提升了60 ~ 100 oC,CTE則下降了16 ~ 60 (ppm/ oC),而兩種交聯型之聚醯胺薄膜皆可在浸泡於 DMAc 溶劑中 2 天而不會有溶解現象。

    In this project, we successfully prepared two dicarboxylic monomers.We used 5-aminoisophthalic acid and tetrafluorophthalic anhydride to synthesize 5-tetrafluorophthalimidoisophthalic acid (monomer 1). And we used maleic anhydride and 5-Aminophthalic acid to synthesize maleimide phthalic acid (monomer 2). The monomers were characterized by FTIR, H-NMR and element analysis to confirm their structure.
    Secondly, we synthesized four new soluble polyamides from monomer 1 (PIA) and monomer 2 (MIPA), with other diamine monomers (6FPPA & TFDB) . The polyamides were characterized by FTIR and H-NMR to confirm their structure.
    Thirdly, we also prepared chemical crosslinked and thermal crosslinked polyamide films that have good chemical resistance. They did not dissolve in the DMAc for 2 or 3 days. Compared with their properties, Td from TGA analysis,CTE and Tg from TMA,we found that thermal crosslinked polyamide films are better than the chemical crosslinked films.

    總目錄 摘要 i Extended Abstract iii 誌謝 x 總目錄 xi 圖目錄 xv 表目錄 xviii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與研究方法 2 第二章 文獻回顧與原理 4 2.1聚醯胺之發展與介紹 4 2.1.1 聚醯胺種類之介紹與應用 4 2.1.2 芳香族聚醯胺之介紹 9 2.2聚醯胺合成方法 12 2.2.1 聚醯胺合成方法與種類 12 2.2.2 影響聚醯胺合成之參數討論 15 2.3 可溶性聚醯胺結構之設計 21 2.4 高分子之交聯方法與介紹 25 2.4.1 化學交聯方法 25 2.4.2 熱交聯方法 28 第三章 實驗方法與步驟 30 3.1 實驗藥品 31 3.2 實驗儀器 32 3.3 實驗步驟 33 3.3.1 二酸單體PIA之合成與純化 33 3.3.2 二酸單體之MIPA之合成與純化 35 3.3.3 PIA+HIA+6FPPA 化學交聯型之聚醯胺合成 38 3.3.4 PIA+HIA+TFDB 化學交聯型之聚醯胺合成 39 3.3.5 PIA+MIPA+6FPPA 熱交聯型之聚醯胺合成 41 3.3.6 PIA+MIPA+TFDB 熱交聯型之聚醯胺合成 43 3.3.7 聚醯胺薄膜之製備 44 3.3.8 化學交聯型之聚醯胺薄膜之製備 45 3.3.9 熱交聯型之聚醯胺薄膜之製備 47 3.4 實驗分析與原理 49 3.4.1 傅立葉轉換紅外線光譜(FTIR)分析 49 3.4.2 核磁共振光譜(1H-NMR) 49 3.4.3 元素分析(EA) 50 3.4.4 聚醯胺固有黏度 (Inherent viscosity) 量測 51 3.4.5 X光繞射繞射儀 (XRD) 51 3.4.6 聚醯胺可溶性測試 52 3.4.7 熱重損失分析儀 (TGA) 52 3.4.8 熱差掃描分析儀 (DSC) 53 3.4.9 熱機械分析儀 (TMA) 53 3.4.10 薄膜機械性質分析 54 3.4.11 交聯之聚醯胺薄膜耐溶劑性測試 54 第四章 結果與討論 56 4.1二酸單體PIA之合成與其化學結構鑑定 56 4.1.1 二酸單體PIA合成 56 4.1.2 二酸單體PIA結構鑑定 56 4.2二酸單體MIPA之合成與其化學結構鑑定 60 4.2.1 二酸單體MIPA合成 60 4.2.2 二酸單體MIPA結構鑑定 61 4.3化學交聯型聚醯胺之合成與結構鑑定和性質分析 64 4.3.1 化學交聯型聚醯胺之分子結構設計 64 4.3.2 化學交聯型聚醯胺之合成 65 4.3.3 不同結構化學交聯型聚醯胺之固有黏度 66 4.3.4 傅立葉轉換紅外線光譜 (FTIR) 分析 67 4.3.5 核磁共振光譜(1H-NMR) 69 4.3.6 X光繞射繞射儀 (XRD) 71 4.3.7 化學交聯型聚醯胺之可溶性測試 73 4.3.8 熱重損失分析(TGA) 74 4.3.9 熱差掃描分析(DSC) 78 4.3.10 熱機械分析(TMA) 80 4.3.11 薄膜機械性質分析 83 4.3.12 化學交聯型聚醯胺薄膜耐化學性測試 84 4.4熱交聯型聚醯胺之合成與結構鑑定和性質分析 85 4.4.1 熱交聯型聚醯胺之分子結構設計 85 4.4.2 熱交聯型聚醯胺之合成 86 4.4.3 不同結構熱交聯型聚醯胺之固有黏度 87 4.4.4 傅立葉轉換紅外線光譜 (FTIR) 分析 88 4.4.5 核磁共振光譜(1H-NMR) 90 4.4.6 X光繞射繞射儀 (XRD) 93 4.4.7 熱交聯型聚醯胺之可溶性測試 95 4.4.8 熱重損失分析(TGA) 96 4.4.9 熱差掃描分析(DSC) 100 4.4.10 熱機械分析(TMA) 102 4.4.11 薄膜機械性質分析 106 4.4.12 熱交聯型之聚醯胺薄膜耐化學性測試 107 第五章 結論 108 參考文獻 109

    參考文獻
    [1] http://psdn.pidc.org.tw/ike/doclib/2003/2003doclib/2003ike08-0/2003i
    ke08-0-47.asp.
    [2] 蕭勝輝、黃泰霖 , “含Benzonorbornane結構之新型聚醯胺之合成與性質” , 2002. 大同大學。
    [3] S. –H. Hsiao, T. –L. Huang, “Synthesis and Properties of Novel Polyamides Based on a Benzonorbornane Dietheramine.” Polymer Journal. 2002 ; 34: 225-233.
    [4] G. –S. Liou, S. –H. Hsiao, “Preparation and characterization of aromatic , polybenzoxazoles bearing ether and 1,4-naphthalene or 2,6-naphthalene units in the main chain .” Macromol. Chem. Phys. 2000 ; 201:42–48.
    [5] C. D. Diakoumakos, J. A. Mikroyannidis, “Polyisophthalarnides with pendent phthalimide groups.” Polymer. 1994 ; 35:1986-05.
    [6] C. –H. Shen, L. –C. Hsu , “Synthesis of novel cross-linked polybenzimidazole membrane for high temperature proton exchange membrane fuel cells.” Journal of Membrane Science. 2013 ; 443: 138–143.
    [7] F. J. Serna, J. D. Abajo, “Crosslinkable Polyamide-imides”. Journal of Applied Polymer Science. 1985 ; 30:61-69.
    [8] https://zh.wikipedia.org/wiki/%E8%81%9A%E9%85%B0%E8%83%BA
    [9] H. H. Yang , “Aromatic Polyamides in Aromatic High- Strength Fibers” , Wiley, New York, 1989.
    [10] http://www.twword.com/wiki/%E8%8A%B3%E7%B6%B8%E7%
    BA%96%E7%B6%AD
    [11] F. Yokote, T. Murakawa , “New Polyamidation through the Activation of Amino Groups with Phenyl Dichlorophosphite in Pyridine .” Journal of Polymer Science: Part A: Polymer Chemistry. 2004 ; 42: 4126–4131.
    [12] J. Zhao, H. Xu, J. Fang, J. Yin, “Synthesis and Characterization of Novel Aromatic Polyamides via Yamazaki–Higashi Phosphorylation Method .” Journal of Applied Polymer Science . 2012 ; 126: 244–252.
    [13] N. Yamazaki, M. Matsumoto, F. Higashi, “Studies on Reactions of the N-Phosphonium Salts of Pyridines. XIV. Wholly Aromatic Polyamides by the Direct Polycondensation Reaction by Using Phosphites in the Presence of Metal Salts.” Journal of Polymer Science:Polymer Chemistry Edition. 1975 ; 13:1373-1380.
    [14] S. –C. Wu, C. –F. Shu, “Synthesis and Properties of Soluble Aromatic
    Polyamides Derived from 2,2-Bis(4-carboxyphenoxy)-9,9-
    spirobifluorene. ”Journal of Polymer Science: Part A: Polymer Chemistry. 2003 ; 41:1160–1166.
    [15] H. G. Rogers, R. A. Gaudiana, W. C. Hollinsed, P. S. Kalyanaraman,
    J. S. Manello, C. McGowan, R. A. Minns, R. Sahatjian, “Highly
    Amorphous, Birefringent, Para-Linked Aromatic Polyamides .”
    Macromolecules . 1985 ; 18: 1058-1068.
    [16] K. H. Choi, Jin Chul Jung , “Synthesis and Characterization of New
    Aromatic Polyamides with N,N-Di(4-n-alkylphenyl)-benzodiimide Unit
    on the Main Chain .” Macromol. Mater. Eng. 2004 ; 289:737–742.
    [17] S. Abida , R. Gharbia , A. Gandinib, “Polyamides incorporating furan moieties, “Synthesis and characterisation of furan-aromatic homologues
    .” Polymer . 2004 ; 45: 5793–5801.
    [18] A. Gandini, M. Belgacem, “Furans in Polymer Chemistry . “ Prog. Polym. Sci. 1997 ; 22: 1238-1245.
    [19] S. –H. Hsiao, C. –W. Chen , G. –S. Liou, ”Novel Aromatic Polyamides Bearing Pendent Diphenylamino or Carbazolyl Groups.” Journal of Polymer Science: Part A: Polymer Chemistry . 2004 ; 42:3302–3313 .
    [20] Y. Delaviz, H. Gibson, “Synthesis of poly(amide crown ethers) based on bis(5-carboxy-1,3-phenylene)-32-crown-10. Network formation through threading.” Macromolecules . 1992 ; 25:4859-4862.
    [21] E. Maya, A. Lozano, J. Abajo, “Soluble Polyamides and Polyimides Functionalized with Benzo-15-Crown-5-Pendant Groups.” Macromol. Rapid Commun. 2004; 25: 592–597.
    [22] J. Abajo , E. Sanlos, “Aromatic Polyamides with Imide Pendent Groups .” Die Angewandte Makromolekulare Chemie. 1983 ; 111:17-27.
    [23] S. Park , J. Lee , D. Suh , “Synthesis and characteristics of novel polyamides having pendant N-phenyl imide groups.” J. Macromol. Sci.—Pure Appl. Chem. 2001; A38: 513–525.
    [24] D. –J. Liaw, P. –N. Hsu, J. –J. Chen, B. –Y. Liaw, C. –Y. Hwang,
    “Synthesis and Characterization of New Soluble Polyamides.” Journal
    of Polymer Science: Part A: Polymer Chemistry. 2001 ; 39:1557–1563.
    [25] S. –H. Hsiao, C. –P. Yang , C. –W. Chen, “Synthesis and properties of novel poly(amide-imide)s containing pendent diphenylamino groups.” European Polymer Journal. 2005 ; 41:511-517.
    [26] D. –J. Liaw, P. –N. Hsu, W. –H. Chen, S. –L. Lin, “High Glass Transitions of New Polyamides, Polyimides, and Poly(amide-imide)s Containing a Triphenylamine Group: Synthesis and Characterization.” Macromolecules. 2002 ; 35: 4669-4676.
    [27] G. –S. Liou, M. Maruyama, M. –A. Kakimoto, Y. Imai, “Preparation and Properties of Aromatic Polyamides from 2,2'-Bis(p-aminophenoxy) biphenyl or 2,2'-Bis (p-aminophenoxy ) -1,l -Binaphthyl and Aromatic Dicarboxylic Acids.” Journal of Polymer Science: Part A Polymer Chemistry. 1993 ; 31:2499-250.
    [28] J. Mikroyannidis, “Aromatic Polyamides and Polyimides with Benzoxazole or Benzothiazole Pendent Groups Prepared from 5-(2-Benzoxazole)- or 5-(2-Benzothiazole)-1,3-phenylenediamine.” Macromolecules. 1995 ; 28:5177-5183.
    [29] M. Taghavi, M. Ghaemy, M. Hassanzadeh, “Influence of ionic liquid on selective polycondensation of a new diamine-bisphenol: Synthesis and properties of polyamides and their composites with modified nanosilica.” Polymer. 2013 ; 54:3828-3840.
    [30] M. Ghaemy, B. Aghakhani, M. Taghavi, M. Mohseni, “Synthesis and characterization of new imidazole and fluorene–bisphenol based polyamides:Thermal, photophysical and antibacterial properties.”
    Reactive & Functional Polymers . 2013 ; 73:555–563.
    [31] S. –H. Hsiao ,S. –C. Peng , Y. –R. Kung , C. –M. Leu ,T. –M. Lee, “Synthesis and electro-optical properties of aromatic polyamides and polyimides bearing pendent 3,6-dimethoxycarbazole units.” European Polymer Journal .2015 ; 73 : 50–64.
    [32] Z. Ge, S. Yang, Z. Tao, J. Liu, L. Fan, “Synthesis and characterization of novel soluble fluorinated aromatic polyamides derived from fluorinated isophthaloyl dichlorides andaromatic diamines.” Polymer. 2004 ; 45: 3627–3635.
    [33] B. Lee, T. Byun, S. Kim, H. Kang, “Soluble Para-Linked Aromatic Polyamides with Pendent Groups.” Macromolecular Research. 2015; 23: 838-843.
    [34] S. Kim , T. Byun, B. Lee, S. Kim , “Rigid-Rod Polyamides from 3,3-bis-(trifluoromethyl) -4,4-diamino-1,1-biphenyl. Macromol.” Chem. Phys. 2015. 216: 1341−1347.
    [35] A. Abdolmaleki , P. Pashaie, “Synthesis and Characterization of Polyamide Containing Maleimide Pendant Group.” Journal of Applied Chemical Research. 2015 ; 9: 43-54.
    [36] Y. –L. Liu , S. –H. Li, H. –C. Lee, K. –Y. Hsu, “Selective reactivity of aromatic amines toward 5-maleimidoisophthalic acid for preparation of polyamides bearing N-phenylmaleimide moieties.” Reactive & Functional Polymers. 2006 ; 66: 924–930.
    [37] S. Dutczak, F. Cuperus, M. Wessling, D. Stamatiali, “New crosslinking method of polyamide–imide membranes for potential application in
    harsh polar aprotic solvents.” Separation and Purification Technology. 2013 ; 102:142–146.
    [38] S. Wang, G. Zhang, M. Han, H. Li, Y. Zhang, J. Ni, W. Ma, “Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells.” International journal of hydrogen energy. 2011 ; 36: 8412-8421.
    [39] S. –K. Kim, T. –H. Kim, T. Ko, J. –C. Lee. “Cross-linked poly(2,5-benzimidazole) consisting of wholly aromatic groups for
    high-temperature PEM fuel cell applications.” Journal of Membrane Science. 2011 ; 373:80–88.
    [40] Y. –L. Liu, Y. –W. Chen, “Thermally Reversible Cross-Linked
    Polyamides with High Toughness and Self-Repairing Ability from
    Maleimide and Furan-Functionalized Aromatic Polyamides.” Macromol. Chem. Phys. 2007 ; 208: 224–232.
    [41] Y. –L. Liu, Y. –H. Wang, “Preparation and Characterization of Multifunctional Maleimide Macromonomers and Their Cured Resins.” Journal of Polymer Science: Part A: Polymer Chemistry. 2004 ; 42: 3178–3188.
    [42] Y. –L. Liu, C. –Y. Hsieh. “Crosslinked Epoxy Materials Exhibiting Thermal Remendablility and Removability from Multifunctional Maleimide and Furan Compounds.” Journal of Polymer Science: Part A: Polymer Chemistry. 2006 ; 44:905–913.

    無法下載圖示 校內:2021-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE