| 研究生: |
戴宏明 Dai, Hung-Ming |
|---|---|
| 論文名稱: |
可溶性可交聯型聚醯胺之製備與其性質之研究 The Preparation and Properties of Soluble and Crosslinkable Polyamide Films |
| 指導教授: |
許聯崇
Hsu, Lien-chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 可溶性高分子 、化學交聯 、熱交聯 、芳香族聚醯胺 、鄰苯二甲醯亞胺 、馬來酰亞胺 |
| 外文關鍵詞: | solube polymer, crosslinking, aromatic polyamide, phthalimide, maleimide |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用將龐大基團 (imide ring) 結構導入二酸單體結構中,以期望能以此類單體合成出一可溶性之聚醯胺。分別利用tetrafluorophthalic anhydride 和 maleic anhydride 與 5-aminophthalic acid hydrate 反應合成出我們所想要結構的單體 5-tetrafluorophthalimidoisophthalic acid (PIA) 和 maleimide phthalic acid (MIPA) 。並利用其和其餘 3 個單體去合成我們所期望得到聚醯胺,分別為二酸單體 5-hydroxyisophthalic acid (HIA) 、 二胺單體2,2-bis[4-(4-aminophenoxy)-phenyl]hexafluoropropane (6FPPA) 、2,2-bistrifluoromethyl benzidine (TFDB) ,並利用FT-IR、NMR去鑑定其結構正確性,得到其固有黏度為0.60 ~ 0.85 (dL/g),且其可溶於高極性溶劑 NMP、DMAc、DMF、DMSO中。
利用所得到之化學交聯型之聚醯胺 (PIA+HIA+6FPPA & PIA+HIA+TFDB) 與DMAc配成2 wt% 之聚醯胺溶液,加入交聯劑(1,4-phenylene diisocynate) 和催化劑 (triethylamine) ,在130 oC下反應3小時並除去溶劑以得到化學交聯型之聚醯胺薄膜。利用熱交聯型之聚醯胺 (PIA+MIPA+6FPPA & PIA+MIPA+TFDB) 與DMAc配成2 wt% 之聚醯胺溶液,利用升溫參數 : 升溫速率5 oC/min ,升溫至 150 oC 持溫 1小時, 180 oC 持溫 1 小時, 220 oC 持溫 2 小時, 260 oC 持溫 2 小時,即可得到熱交聯型之聚醯胺薄膜。
分別利用化學交聯型聚醯胺與熱交聯型聚醯胺薄膜去測量TGA、TMA並和未交聯聚醯胺薄膜作比較,可得到化學交聯型薄膜在交聯後之熱烈解溫度提升了約10 oC, Tg提升了約5 oC ,CTE則下降了15 ~ 40 (ppm/ oC) ;而熱交聯型薄膜之熱烈解溫度提升了50 ~ 60 oC,
Tg提升了60 ~ 100 oC,CTE則下降了16 ~ 60 (ppm/ oC),而兩種交聯型之聚醯胺薄膜皆可在浸泡於 DMAc 溶劑中 2 天而不會有溶解現象。
In this project, we successfully prepared two dicarboxylic monomers.We used 5-aminoisophthalic acid and tetrafluorophthalic anhydride to synthesize 5-tetrafluorophthalimidoisophthalic acid (monomer 1). And we used maleic anhydride and 5-Aminophthalic acid to synthesize maleimide phthalic acid (monomer 2). The monomers were characterized by FTIR, H-NMR and element analysis to confirm their structure.
Secondly, we synthesized four new soluble polyamides from monomer 1 (PIA) and monomer 2 (MIPA), with other diamine monomers (6FPPA & TFDB) . The polyamides were characterized by FTIR and H-NMR to confirm their structure.
Thirdly, we also prepared chemical crosslinked and thermal crosslinked polyamide films that have good chemical resistance. They did not dissolve in the DMAc for 2 or 3 days. Compared with their properties, Td from TGA analysis,CTE and Tg from TMA,we found that thermal crosslinked polyamide films are better than the chemical crosslinked films.
參考文獻
[1] http://psdn.pidc.org.tw/ike/doclib/2003/2003doclib/2003ike08-0/2003i
ke08-0-47.asp.
[2] 蕭勝輝、黃泰霖 , “含Benzonorbornane結構之新型聚醯胺之合成與性質” , 2002. 大同大學。
[3] S. –H. Hsiao, T. –L. Huang, “Synthesis and Properties of Novel Polyamides Based on a Benzonorbornane Dietheramine.” Polymer Journal. 2002 ; 34: 225-233.
[4] G. –S. Liou, S. –H. Hsiao, “Preparation and characterization of aromatic , polybenzoxazoles bearing ether and 1,4-naphthalene or 2,6-naphthalene units in the main chain .” Macromol. Chem. Phys. 2000 ; 201:42–48.
[5] C. D. Diakoumakos, J. A. Mikroyannidis, “Polyisophthalarnides with pendent phthalimide groups.” Polymer. 1994 ; 35:1986-05.
[6] C. –H. Shen, L. –C. Hsu , “Synthesis of novel cross-linked polybenzimidazole membrane for high temperature proton exchange membrane fuel cells.” Journal of Membrane Science. 2013 ; 443: 138–143.
[7] F. J. Serna, J. D. Abajo, “Crosslinkable Polyamide-imides”. Journal of Applied Polymer Science. 1985 ; 30:61-69.
[8] https://zh.wikipedia.org/wiki/%E8%81%9A%E9%85%B0%E8%83%BA
[9] H. H. Yang , “Aromatic Polyamides in Aromatic High- Strength Fibers” , Wiley, New York, 1989.
[10] http://www.twword.com/wiki/%E8%8A%B3%E7%B6%B8%E7%
BA%96%E7%B6%AD
[11] F. Yokote, T. Murakawa , “New Polyamidation through the Activation of Amino Groups with Phenyl Dichlorophosphite in Pyridine .” Journal of Polymer Science: Part A: Polymer Chemistry. 2004 ; 42: 4126–4131.
[12] J. Zhao, H. Xu, J. Fang, J. Yin, “Synthesis and Characterization of Novel Aromatic Polyamides via Yamazaki–Higashi Phosphorylation Method .” Journal of Applied Polymer Science . 2012 ; 126: 244–252.
[13] N. Yamazaki, M. Matsumoto, F. Higashi, “Studies on Reactions of the N-Phosphonium Salts of Pyridines. XIV. Wholly Aromatic Polyamides by the Direct Polycondensation Reaction by Using Phosphites in the Presence of Metal Salts.” Journal of Polymer Science:Polymer Chemistry Edition. 1975 ; 13:1373-1380.
[14] S. –C. Wu, C. –F. Shu, “Synthesis and Properties of Soluble Aromatic
Polyamides Derived from 2,2-Bis(4-carboxyphenoxy)-9,9-
spirobifluorene. ”Journal of Polymer Science: Part A: Polymer Chemistry. 2003 ; 41:1160–1166.
[15] H. G. Rogers, R. A. Gaudiana, W. C. Hollinsed, P. S. Kalyanaraman,
J. S. Manello, C. McGowan, R. A. Minns, R. Sahatjian, “Highly
Amorphous, Birefringent, Para-Linked Aromatic Polyamides .”
Macromolecules . 1985 ; 18: 1058-1068.
[16] K. H. Choi, Jin Chul Jung , “Synthesis and Characterization of New
Aromatic Polyamides with N,N-Di(4-n-alkylphenyl)-benzodiimide Unit
on the Main Chain .” Macromol. Mater. Eng. 2004 ; 289:737–742.
[17] S. Abida , R. Gharbia , A. Gandinib, “Polyamides incorporating furan moieties, “Synthesis and characterisation of furan-aromatic homologues
.” Polymer . 2004 ; 45: 5793–5801.
[18] A. Gandini, M. Belgacem, “Furans in Polymer Chemistry . “ Prog. Polym. Sci. 1997 ; 22: 1238-1245.
[19] S. –H. Hsiao, C. –W. Chen , G. –S. Liou, ”Novel Aromatic Polyamides Bearing Pendent Diphenylamino or Carbazolyl Groups.” Journal of Polymer Science: Part A: Polymer Chemistry . 2004 ; 42:3302–3313 .
[20] Y. Delaviz, H. Gibson, “Synthesis of poly(amide crown ethers) based on bis(5-carboxy-1,3-phenylene)-32-crown-10. Network formation through threading.” Macromolecules . 1992 ; 25:4859-4862.
[21] E. Maya, A. Lozano, J. Abajo, “Soluble Polyamides and Polyimides Functionalized with Benzo-15-Crown-5-Pendant Groups.” Macromol. Rapid Commun. 2004; 25: 592–597.
[22] J. Abajo , E. Sanlos, “Aromatic Polyamides with Imide Pendent Groups .” Die Angewandte Makromolekulare Chemie. 1983 ; 111:17-27.
[23] S. Park , J. Lee , D. Suh , “Synthesis and characteristics of novel polyamides having pendant N-phenyl imide groups.” J. Macromol. Sci.—Pure Appl. Chem. 2001; A38: 513–525.
[24] D. –J. Liaw, P. –N. Hsu, J. –J. Chen, B. –Y. Liaw, C. –Y. Hwang,
“Synthesis and Characterization of New Soluble Polyamides.” Journal
of Polymer Science: Part A: Polymer Chemistry. 2001 ; 39:1557–1563.
[25] S. –H. Hsiao, C. –P. Yang , C. –W. Chen, “Synthesis and properties of novel poly(amide-imide)s containing pendent diphenylamino groups.” European Polymer Journal. 2005 ; 41:511-517.
[26] D. –J. Liaw, P. –N. Hsu, W. –H. Chen, S. –L. Lin, “High Glass Transitions of New Polyamides, Polyimides, and Poly(amide-imide)s Containing a Triphenylamine Group: Synthesis and Characterization.” Macromolecules. 2002 ; 35: 4669-4676.
[27] G. –S. Liou, M. Maruyama, M. –A. Kakimoto, Y. Imai, “Preparation and Properties of Aromatic Polyamides from 2,2'-Bis(p-aminophenoxy) biphenyl or 2,2'-Bis (p-aminophenoxy ) -1,l -Binaphthyl and Aromatic Dicarboxylic Acids.” Journal of Polymer Science: Part A Polymer Chemistry. 1993 ; 31:2499-250.
[28] J. Mikroyannidis, “Aromatic Polyamides and Polyimides with Benzoxazole or Benzothiazole Pendent Groups Prepared from 5-(2-Benzoxazole)- or 5-(2-Benzothiazole)-1,3-phenylenediamine.” Macromolecules. 1995 ; 28:5177-5183.
[29] M. Taghavi, M. Ghaemy, M. Hassanzadeh, “Influence of ionic liquid on selective polycondensation of a new diamine-bisphenol: Synthesis and properties of polyamides and their composites with modified nanosilica.” Polymer. 2013 ; 54:3828-3840.
[30] M. Ghaemy, B. Aghakhani, M. Taghavi, M. Mohseni, “Synthesis and characterization of new imidazole and fluorene–bisphenol based polyamides:Thermal, photophysical and antibacterial properties.”
Reactive & Functional Polymers . 2013 ; 73:555–563.
[31] S. –H. Hsiao ,S. –C. Peng , Y. –R. Kung , C. –M. Leu ,T. –M. Lee, “Synthesis and electro-optical properties of aromatic polyamides and polyimides bearing pendent 3,6-dimethoxycarbazole units.” European Polymer Journal .2015 ; 73 : 50–64.
[32] Z. Ge, S. Yang, Z. Tao, J. Liu, L. Fan, “Synthesis and characterization of novel soluble fluorinated aromatic polyamides derived from fluorinated isophthaloyl dichlorides andaromatic diamines.” Polymer. 2004 ; 45: 3627–3635.
[33] B. Lee, T. Byun, S. Kim, H. Kang, “Soluble Para-Linked Aromatic Polyamides with Pendent Groups.” Macromolecular Research. 2015; 23: 838-843.
[34] S. Kim , T. Byun, B. Lee, S. Kim , “Rigid-Rod Polyamides from 3,3-bis-(trifluoromethyl) -4,4-diamino-1,1-biphenyl. Macromol.” Chem. Phys. 2015. 216: 1341−1347.
[35] A. Abdolmaleki , P. Pashaie, “Synthesis and Characterization of Polyamide Containing Maleimide Pendant Group.” Journal of Applied Chemical Research. 2015 ; 9: 43-54.
[36] Y. –L. Liu , S. –H. Li, H. –C. Lee, K. –Y. Hsu, “Selective reactivity of aromatic amines toward 5-maleimidoisophthalic acid for preparation of polyamides bearing N-phenylmaleimide moieties.” Reactive & Functional Polymers. 2006 ; 66: 924–930.
[37] S. Dutczak, F. Cuperus, M. Wessling, D. Stamatiali, “New crosslinking method of polyamide–imide membranes for potential application in
harsh polar aprotic solvents.” Separation and Purification Technology. 2013 ; 102:142–146.
[38] S. Wang, G. Zhang, M. Han, H. Li, Y. Zhang, J. Ni, W. Ma, “Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells.” International journal of hydrogen energy. 2011 ; 36: 8412-8421.
[39] S. –K. Kim, T. –H. Kim, T. Ko, J. –C. Lee. “Cross-linked poly(2,5-benzimidazole) consisting of wholly aromatic groups for
high-temperature PEM fuel cell applications.” Journal of Membrane Science. 2011 ; 373:80–88.
[40] Y. –L. Liu, Y. –W. Chen, “Thermally Reversible Cross-Linked
Polyamides with High Toughness and Self-Repairing Ability from
Maleimide and Furan-Functionalized Aromatic Polyamides.” Macromol. Chem. Phys. 2007 ; 208: 224–232.
[41] Y. –L. Liu, Y. –H. Wang, “Preparation and Characterization of Multifunctional Maleimide Macromonomers and Their Cured Resins.” Journal of Polymer Science: Part A: Polymer Chemistry. 2004 ; 42: 3178–3188.
[42] Y. –L. Liu, C. –Y. Hsieh. “Crosslinked Epoxy Materials Exhibiting Thermal Remendablility and Removability from Multifunctional Maleimide and Furan Compounds.” Journal of Polymer Science: Part A: Polymer Chemistry. 2006 ; 44:905–913.
校內:2021-08-12公開