| 研究生: |
黃浩倫 Huang, Hao-Lun |
|---|---|
| 論文名稱: |
基於演化式演算法之工業用機械手臂動態參數鑑別研究 Study on Dynamic Parameter Identification for Industrial Robot Manipulators Based on Evolutionary Algorithms |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 閉迴路系統鑑別 、動態參數鑑別 、估計誤差 、演化式演算法 、工業用機械手臂 、物理一致性 、遞迴神經網路 |
| 外文關鍵詞: | Closed-loop system identification, dynamic parameter identification, estimation error, evolutionary algorithms, industrial robot manipulator, physical consistency, recurrent neural network |
| ORCID: | 0009-0007-8758-1520 |
| 相關次數: | 點閱:135 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文在閉迴路輸入誤差的概念之下,提出了一種基於演化式演算法的工業用機械手臂動態參數鑑別方法。該方法主要是利用實際機器人與平行估計模型之間的關節轉矩殘差來對動態參數進行估計。實際機器人與估計模型皆使用相同的參考軌跡與調整到相同增益的相同控制律架構。估計模型的狀態是透過模型狀態生成器對量測信號進行濾波而產生的,因此藉由調整濾波器的截止頻率,可以創建出不同的估計模型。透過演化式演算法,我們可以在模型狀態生成器相對應的解空間內,搜尋出一個與實際機器人具有最小關節轉矩殘差的估計模型。另外,演化式演算法會自動調整對量測信號的濾波程度,為估計模型提供無雜訊的信號,使鑑別結果能夠更加地準確。透過最佳化過程所得出估計模型的動態參數,即為實際機器人最佳的參數鑑別結果。此外,本論文還提供了一個觀測矩陣的近似算法,能夠有效地降低估計模型構建的計算成本,使演化式演算法的搜尋更有效率。為了能夠進一步地提升動態模型的鑑別精度,本論文另外提出了一種基於遞迴神經網路的算法,可用於處理基本動態參數的物理一致性問題。首先,將慣性張量、傳動鏈慣性與摩擦力等相關的物理約束合併到線性矩陣不等式的公式中,以檢驗基本動態參數的物理一致性。接著,透過矩陣導向的梯度型遞迴神經網路來解決線性矩陣不等式的最佳化問題。由於此類遞迴神經網路的網路結構簡單,且求解線性矩陣不等式的過程是以並行分佈的方式運算。因此相較於目前常用的半正定規劃技術,可以更快速地完成物理一致性的驗證。此外,所提出梯度型遞迴神經網路的穩定性也已經利用Lyapunov穩定性定理進行證明。本論文所提出之物理一致性算法由於具有運算成本低的特點,非常適合應用在一些需要快速一致性評估的鑑別方法,例如線上鑑別方法或基於最佳化的鑑別方法。同時,這項物理一致評估技術也相當適合應用在本論文所提出的鑑別方法上,以確保所鑑別出的動態參數在物理上是一致的。最後,在六自由度工業用機械手臂上進行了幾項實驗,以驗證本論文所提出鑑別方法與物理一致性算法的有效性。
By exploiting the concept of closed-loop input error (CLIE), this dissertation proposes an identification approach for the dynamic parameters of industrial robot manipulator based on evolutionary algorithms (EAs). The proposed approach estimates the dynamic parameters by using joint torque residuals between the actual robot and a parallel estimated model. Both the actual robot and the estimated model use the same reference trajectories and the same control law structure tuned with the same gain. The state of the estimated model is generated by filtering the measured signal through a model state generator, so by adjusting the cutoff frequency of the filter, different estimated models can be generated. By using EA, one can search for an estimated model in the solution space corresponding to the model state generator so that the joint torque difference between the actual robot and the estimated model is minimized. In addition, EA will automatically adjust the filtering strength of the measured signals to provide a noise-free signal for the estimated model so that the identification result can be more accurate. The dynamic parameters of the estimated model obtained through the optimization process are the optimal identification results of the actual robot. Moreover, to reduce the computation cost of the estimated model, this dissertation also provides an approximation algorithm for the observation matrix so as to enhance the search efficiency of EA. In addition, to further improve the identification accuracy of dynamic models, this dissertation proposes an algorithm based on recurrent neural network (RNN) to deal with the physical consistency problem of base dynamic parameters. Firstly, related physical constraints such as inertia tensor, drive chain inertia, and friction are combined into the formulation of linear matrix inequality (LMI) to examine the physical consistency of the base dynamic parameters. The optimization problem of LMI is then solved by a matrix-oriented gradient-type RNN. Since the network structure of this type of RNN is simple and the process for solving the optimization problem of LMI is parallel distributed, the physical consistency verification can be completed more quickly than when utilizing commonly used semi-definite programming techniques. Moreover, the stability of the proposed gradient-type RNN has been proved by using the Lyapunov stability theorem. By taking advantage of highly efficient computation capabilities, the proposed physical consistency algorithm is particularly suitable for identification approaches that require rapid consistency assessment such as on-line identification methods or optimization-based identification methods. Meanwhile, this physical consistency assessment technique is also quite suitable for the identification approaches proposed in this dissertation to ensure that the identified dynamic parameters are physically consistent. Several experiments have been conducted on a 6-DOF industrial robot manipulator to verify the effectiveness of the proposed identification approach and the proposed physical consistency algorithm.
[1] B. Xiao and S. Yin, "Exponential tracking control of robotic manipulators with uncertain dynamic and kinematics," IEEE Trans. Ind. Informat., vol. 15, no. 2, pp. 689–698, Feb. 2019.
[2] S. K. Kommuri, S. Han, and S. Lee, "External torque estimation using higher order sliding-mode observer for robot manipulators," IEEE/ ASME Trans. Mechatronics, vol. 27, no. 1, pp. 513–523, Feb. 2022.
[3] A. Martin and M. R. Emami, "Dynamic load emulation in hardware-in-the-loop simulation of robot manipulators," IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2980–2987, Jul. 2011.
[4] Z. Zhang, R. Dershan, A. M. S. Enayati, M. Yaghoubi, D. Richert, and H. Najjaran, "A high-fidelity simulation platform for industrial manufacturing by incorporating robotic dynamic into an industrial simulation tool," IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 9123–9128, Oct. 2022.
[5] F. Ficuciello, L. Villani, and B. Siciliano, "Variable impedance control of redundant manipulators for intuitive human-robot physical interaction," IEEE Trans. Robot., vol. 31, no. 4, pp. 850–863, Aug. 2015.
[6] M. Sharifi, A. Zakerimanesh, J. K. Mehr, A. Torabi, V. K. Mushahwar, and M. Tavakoli, "Impedance variation and learning strategies in human–robot interaction," IEEE Trans. Cybern., vol. 52, no. 7, pp. 6462–6475, Jul. 2022.
[7] J. Wu, J. Wang, and Z. You, "An overview of dynamic parameter identification of robots," Robot. Comput.–Integr. Manuf., vol. 26, no. 5, pp. 414–419, Oct. 2010.
[8] C. Urrea and J. Pascal, "Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot," Comput. Elect. Eng., vol. 67, pp. 791–806, Apr. 2018.
[9] Q. Leboutet, J. Roux, A. Janot, J. R. Guadarrama-Olvera, and G. Cheng, "Inertial parameter identification in robotics: A survey," Appl. Sci., vol. 11, no. 9, May 2021, Art. no. 4303.
[10] M. Gautier, "Dynamic identification of robots with power model," in Proc. IEEE Int. Conf. Robot. Autom., 1997, pp. 1922–1927.
[11] J. Swevers, W. Verdonck, and J. D. Schutter, "Dynamic model identification for industrial robots," IEEE Control Syst. Mag., vol. 27, no. 5, pp. 58–71, Oct. 2007.
[12] A. Janot, P. O. Vandanjon, and M. Gautier, "Identification of physical parameters and instrumental variables validation with two-stage least squares estimator," IEEE Trans. Control Syst. Technol., vol. 21, no. 4, pp. 1386–1393, Jul. 2013.
[13] J. Jin and N. Gans, "Parameter identification for industrial robots with a fast and robust trajectory design approach," Robot. Comput. Int. Manuf., vol. 31, pp. 21–29, Feb. 2015.
[14] G. Golluccio, G. Gillini, A. Marino, and G. Antonelli, "Robot dynamic identification: A reproducible comparison with experiments on Kinova Jaco," IEEE Robot. Autom. Mag., vol. 28, no. 3, pp. 128–140, Sep. 2021.
[15] I. D. Landau and A. Karimi, "An output error recursive algorithm for unbiased identification in closed loop," Automatica, vol. 33, no. 5, pp. 933–938, May 1997.
[16] A. Perrusquía and W. Guo, "A closed-loop output error approach for physics-informed trajectory inference using online data," IEEE Trans. Cybern., vol. 53, no. 3, pp. 1379–1391, Mar. 2023.
[17] R. Garrido and R. Miranda, "DC servomechanism parameter identification: A closed loop input error approach," ISA Trans., vol. 51, no. 1, pp. 42–49, Jan. 2012.
[18] M. Brunot, A. Janot, F. Carrillo, J. Cheong, and J. P. Noël, "Output error methods for robot identification," J. Dyn. Syst. Meas. Control, vol. 142, no. 3, Mar. 2020, Art. no. 31002.
[19] E. Tohme, R. Ouvrard, A. Abche, J. C. Trigeassou, T. Poinot, and G. Mercère, "A methodology to enhance the convergence of output error identification algorithms," in Proc. Euro. Control Conf., 2007, pp. 5721–5728.
[20] A. Janot, M. Gautier, A. Jubien, and P. O. Vandanjon, "Comparison between the CLOE method and the DIDIM method for robots identification," IEEE Trans. Control Syst. Technol., vol. 22, no. 5, pp. 1935–1941, Sep. 2014.
[21] M. Gautier, A. Janot, and P. O. Vandanjon, "A new closed-loop output error method for parameter identification of robot dynamic," IEEE Trans. Control Syst. Technol., vol. 21, no. 2, pp. 428–444, Mar. 2013.
[22] P. Ph. Robet and M. Gautier, "Parameters identification of an electrical actuator with methods based on IDIM, DIDIM, IDIM2, DIDIM2," EPE Journal, vol. 28, no. 3, pp. 136–150, May 2018.
[23] K. S. Eom, I. H. Suh, W. K. Chung, and S. R. Oh, "Disturbance observer based force control of robot manipulator without force sensor," in Proc. IEEE Int. Conf. Robot. Automat., 1998, pp. 3012–3017.
[24] A. Perrusquia, R. Garrido, and W. Yu, "Stable robot manipulator parameter identification: A closed-loop input error approach," Automatica, vol. 141, Jul. 2022, Art. no. 110294.
[25] B. Bona and M. Indri, "Friction compensation in robotics: An overview," in Proc. IEEE Conf. Decision Control Eur. Control Conf., 2005, pp. 4360–4367.
[26] M. R. Kermani, R. V. Patel, and M. Moallem, "Friction Identification and compensation in robotic manipulators," IEEE Trans. Instrum. Meas., vol. 56, no. 6, pp. 2346–2353, Dec. 2007.
[27] M. Indri and S. Trapani, "Framework for static and dynamic friction identification for industrial manipulators," IEEE/ASME Trans. Mechatronics, vol. 25, no. 3, pp. 1589–1599, Jun. 2020.
[28] C. D. Sousa and R. Cortesão, "Inertia tensor properties in robot dynamic identification: A linear matrix inequality approach," IEEE/ASME Trans. Mechatronics, vol. 24, no. 1, pp. 406–411, Feb. 2019.
[29] C. D. Sousa and R. Cortesão, "Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach," Int. J. Robot. Res., vol. 33, no. 6, pp. 931–944, Feb. 2014.
[30] T. A. Howell, S. Le Cleac’h, S. Singh, P. Florence, Z. Manchester, and V. Sindhwani, "Trajectory optimization with optimization-based dynamics," IEEE Robot. Autom. Lett., vol. 7, no. 3, pp. 6750–6757, July 2022.
[31] Z. Zhuang, H. Tao, Y. Chen, V. Stojanovic, and W. Paszke, "An optimal iterative learning control approach for linear systems with nonuniform trial lengths under input constraints," IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 6, pp. 3461–3473, Jun. 2023.
[32] V. Stojanovie, N. Nedie, D. Prsic, L. Dubonjic, and V. Djordjevic, "Application of cuckoo search algorithm to constrained control problem of a parallel robot platform," Int. J. Adv. Manuf. Technol., vol. 87, nos. 9–12, pp. 2497–2507, Dec. 2016.
[33] T. Yifei, Z. Meng, L. Jingwei, L. Dongbo, and W. Yulin, "Research on intelligent welding robot path optimization based on GA and PSO algorithms," IEEE Access, vol. 6, pp. 65397–65404, Oct. 2018.
[34] E. Galan-Uribe and L. Morales-Velazquez, "Kinematic optimization of 6DOF serial robot arms by bio-inspired algorithms," IEEE Access, vol. 10, pp. 110485–110496, Oct. 2022.
[35] M. Iwasaki, M. Miwa, and N. Matsui, "GA-based evolutionary identification algorithm for unknown structured mechatronic systems," IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 300–305, Feb. 2005.
[36] L. Zhang, J. Wang, J. Chen, K. Chen, B. Lin, and F. Xu, "Dynamic modeling for a 6-DOF robot manipulator based on a centrosymmetric static friction model and whale genetic optimization algorithm," Adv. Eng. Softw., vol. 135, Sep. 2019, Art. no. 102684.
[37] Z. Bingül and O. Karahan, "Dynamic identification of Staubli RX-60 robot using PSO and LS methods," Expert. Syst. Appl., vol. 38, no. 4, pp. 4136–4149, Apr. 2011.
[38] Y. X. Zheng and Y. Liao, "Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization," Optik, vol. 127, no. 19, pp. 7865–7874, Oct. 2016.
[39] W. He, W. Ge, Y. Li, Y.-J. Liu, C. Yang, and C. Sun, "Model identification and control design for a humanoid robot," IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 1, pp. 45–57, Jan. 2017.
[40] L. Ding, H. Wu, Y. Yao, and Y. Yang, "Dynamic model identification for 6-DOF industrial robots," J. Robot., vol. 2015, Oct. 2015, Art. no. 471478.
[41] J. Dong, J. Xu, Q. Zhou, J. Zhu, and L. Yu, "Dynamic identification of industrial robot based on nonlinear friction model and LS-SOS algorithm," IEEE Trans. Instrum. Meas., vol. 70, Oct. 2021, Art. no. 7504512.
[42] A. Calanca, L. M. Capisani, A. Ferrara, and L. Magnani, "MIMO closed loop identification of an industrial robot," IEEE Trans. Control Syst. Technol., vol. 19, no. 5, pp. 1214–1224, Sep. 2011.
[43] D. Jung, H. Do, T. Choi, J. Park, and J. Cheong, "Robust parameter estimation of robot manipulators using torque separation technique," IEEE Access, vol. 9, pp. 150443–150458, 2021.
[44] A. Janot, P. O. Vandanjon, and M. Gautier, "A generic instrumental variable approach for industrial robot identification," IEEE Trans. Control Syst. Technol., vol. 22, no. 1, pp. 132–145, Jan. 2014.
[45] A. Janot, P. O. Vandanjon, and M. Gautier, "An instrumental variable approach for rigid industrial robots identification," Control Eng. Pract., vol. 25, pp. 85–101, Apr. 2014.
[46] A. Janot, P. O. Vandanjon, and M. Gautier, "A revised Durbin-Wu-Hausman test for industrial robot identification," Control Eng. Pract., vol. 48, pp. 52–62, Mar. 2016.
[47] M. Brunot, A. Janot, P. C. Young, and F. Carrillo, "An improved instrumental variable method for industrial robot model identification," Control Eng. Pract., vol. 74, pp. 107–117, May 2018.
[48] Y. Han, J. Wu, C. Liu, and Z. Xiong, "An iterative approach for accurate dynamic model identification of industrial robots," IEEE Trans. Robot., vol. 36, no. 5, pp. 1577–1594, Oct. 2020.
[49] Y. Huang, J. Ke, X. Zhang, and J. Ota, "Dynamic parameter identification of serial robots using a hybrid approach," IEEE Trans. Robot., vol. 39, no. 2, pp. 1607–1621, Apr. 2023.
[50] S. Wang, X. Shao, L. Yang, and N. Liu, "Deep learning aided dynamic parameter identification of 6-DOF robot manipulators," IEEE Access, vol. 8, pp. 138102–138116, 2020.
[51] C. L. Carreón-Díaz De León, S. Vergara-Limón, M. A. D. Vargas-Treviño, J. López-Gómez, J. M. Gonzalez-Calleros, D. M. González-Arriaga, and M. Vargas-Treviño, "Parameter identification of a robot arm manipulator based on a convolutional neural network," IEEE Access, vol. 10, pp. 55002–55019, 2022.
[52] H. Su, W. Qi, C. Yang, J. Sandoval, G. Ferrigno, and E. De Momi, "Deep neural network approach in robot tool dynamics identification for bilateral teleoperation," IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2943–2949, Apr. 2020.
[53] H. Mayeda, K. Yoshida, and K. Osuka, "Base parameters of manipulator dynamic models," IEEE Trans. Robot. Autom., vol. 6, no. 3, pp. 312–321, Jun. 1990.
[54] P. M. Wensing, S. Kim, and J. J. E. Slotine, "Linear matrix inequalities for physically consistent inertial parameter identification: A statistical perspective on the mass distribution," IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 60–67, Jan. 2018.
[55] C. Gaz, M. Cognetti, A. Oliva, P. Robuffo Giordano, and A. De Luca, "Dynamic identification of the Franka Emika Panda robot with retrieval of feasible parameters using penalty-based optimization," IEEE Robot. Automat. Lett., vol. 4, no. 4, pp. 4147–4154, Oct. 2019.
[56] T. Xu, J. Fan, Y. Chen, X. Ng, M. H. Ang, Q. Fang, Y. Zhu, and J. Zhao, "Dynamic identification of the KUKA LBR iiwa robot with retrieval of physical parameters using global optimization," IEEE Access, vol. 8, pp. 108018–108031, 2020.
[57] Z. Fu, J. Pan, E. Spyrakos-Papastavridis, Y. H. Lin, X. Zhou, X. Chen, and J. S. Dai, "A lie-theory-based dynamic parameter identification methodology for serial manipulators," IEEE/ASME Trans. Mechatronics, vol. 26, no. 5, pp. 2688–2699, Oct. 2021.
[58] A. Janot and P. M. Wensing, "Sequential semidefinite optimization for physically and statistically consistent robot identification," Control Eng. Pract., vol. 107, Feb. 2021, Art. no. 104699.
[59] P. Agand, M. A. Shoorehdeli, and A. Khaki-Sedigh, "Adaptive recurrent neural network with Lyapunov stability learning rules for robot dynamic terms identification," Eng. Appl. Artif. Intell., vol. 65, pp. 1–11, Oct. 2017.
[60] C. Yang, Y. Jiang, W. He, J. Na, Z. Li, and B. Xu, "Adaptive parameter estimation and control design for robot manipulators with finite-time convergence," IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8112–8123, Oct. 2018.
[61] H. Jin, Z. Liu, H. Zhang, Y. Liu, and J. Zhao, "A dynamic parameter identification method for flexible joints based on adaptive control," IEEE/ASME Trans. Mechatronics, vol. 23, no. 6, pp. 2896–2908, Dec. 2018.
[62] R. Hayat, M. Leibold, and M. Buss, "Robust-adaptive controller design for robot manipulators using the H∞ approach," IEEE Access, vol. 6, pp. 51626–51639, Sep. 2018.
[63] F. Luan, J. Na, Y. Huang, and G. Gao, "Adaptive neural network control for robotic manipulators with guaranteed finite-time convergence," Neurocomputing, vol. 337, pp. 153–164, Apr. 2019.
[64] C. L. Lin, C. C. Lai, and T. H. Huang, "A neural network for linear matrix inequality problems," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1078–1092, Sep. 2000.
[65] L. Cheng, Z. G. Hou, and M. Tan, "A simplified neural network for linear matrix inequality problems," Neural Process. Lett., vol. 29, no. 3, pp. 213–230, Jun. 2009.
[66] W. Khalil and J. F. Kleinfinger, "A new geometric notation for open and closed-loop robots," in Proc. IEEE Int. Conf. Robot. Autom., 1986, pp. 1174–1179.
[67] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing, Vision, and Intelligence. New York, USA: McGraw-Hill, 1987.
[68] P. Fisette, B. Raucent, and J. C. Samin, "Minimal dynamic characterization of tree-like multibody systems," Nonlinear Dyn., vol. 9, pp. 165–184, Feb. 1996.
[69] M. Gautier and W. Khalil, "Direct calculation of minimum set of inertial parameters of serial robots," IEEE Trans. Robot. Autom., vol. 6, no. 3, pp. 368–373, Jun. 1990.
[70] M. Gautier, "Numerical calculation of the base inertial parameters of robots," J. Robot. Syst., vol. 8, no. 4, pp. 485–506, Jun. 1990.
[71] M. Gautier and W. Khalil, "Exciting trajectories for the identification of the inertial parameters of robots," Int. J. Robot. Res., vol. 11, no. 4, pp. 362–375, Aug. 1992.
[72] J. Swevers, C. Ganseman, J. De Schutter, and H. Van Brussel, "Experimental robot identification using optimized periodic trajectories," Mech. Syst. Signal Process., vol. 10, no. 5, pp. 561–577, Sep. 1996.
[73] J. Swevers, C. Ganseman, D. B. Tukel, J. de Schutter, and H. V. Brussel, "Optimal robot excitation and identification," IEEE Trans. Robot. Autom., vol. 13, no. 5, pp. 730–740, Oct. 1997.
[74] W. Wu, S. Zhu, X. Wang, and H. Liu, "Closed-loop dynamic parameter identification of robot manipulators using modified Fourier series," Int. J. Adv. Robot. Syst., vol. 9, no. 1, Apr. 2012, Art. no. 29.
[75] G. Calafiore, M. Indri, and B. Bona, "Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation," J. Robot. Syst., vol. 18, no. 2, pp. 55–68. Feb. 2001.
[76] T. Katsumata, B. Navarro, V. Bonnet, P. Fraisse, A. Crosnier, and G. Venture, "Optimal exciting motion for fast robot identification. Application to contact painting tasks with estimated external forces," Robot. Auton. Syst., vol. 113, pp. 149–159, Mar. 2019.
[77] J. Y. S. Luh, "Conventional controller design for industrial robots – A tutorial," IEEE Trans. Syst., Man, Cybern., vol. SMC-13, no. 3, pp. 298–316, May/Jun. 1983.
[78] V. G. Gourishankar, L. Trybus, R. E. Rink, and G. M. Steil, "Controller design for robot arm guarded and complaint motions," IEEE Trans. Syst., Man, Cybern., vol. SMC-17, no. 4, pp. 650–654, Jul./Aug. 1987.
[79] K. Yoshida and W. Khalil, "Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters," Int. J. Robot. Res., vol. 19, no. 5, pp. 498–510, May 2000.
[80] F. Zhang, The Schur Complement and Its Applications. Berlin, Germany: Springer-Verlag, 2005.
[81] S. Traversaro, S. Brossette, A. Escande, and F. Nori, "Identification of fully physical consistent inertial parameters using optimization on manifolds," in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 5446–5451.
[82] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Cambridge, Massachusetts, USA: MIT Press, 1992.
[83] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in Proc. 6th Int. Symp. Micro Mach. Hum. Sci., 1995, pp. 39–43.
[84] R. Storn and K. Price, "Differential evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces," J. Glob. Optim., vol. 11, pp. 341–359, 1997.
[85] M. Gautier and Ph. Poignet, "Extended Kalman filtering and weighted least squares dynamic identification of robot," Control Eng. Pract., vol. 9, no. 12, pp. 1361–1372, Dec. 2001.
[86] R. Davidson and J. G. MacKinnon, Estimation and Inference in Econometrics. New York, USA: Oxford Univ. Press, 1993.
[87] H. L. Huang and M. Y. Cheng, "A new closed-loop input error approach for industrial robot manipulator identification based on evolutionary algorithms," IEEE Trans. Control Syst. Technol., early access, 2024, doi: 10.1109/TCST.2024.3356391.
[88] C. E. Shannon, "Communication in the presence of noise," Proc. IRE, vol. 37, no. 1, pp. 10–21, Jan. 1949.
[89] N. Farhat, V. Mata, A. Page, and F. Valero, "Identification of dynamic parameters of a 3-DOF RPS parallel manipulator," Mech. Mach. Theory, vol. 43, no. 1, pp. 1–17, Jan. 2008.
[90] Y. Zhou, Z. Li, X. Zhang, Y. Li, and M. Zhu, "A semilinearized approach for dynamic identification of manipulator based on nonlinear friction model," IEEE Trans. Instrum. Meas., vol. 73, Mar. 2024, Art. no. 7503520.
[91] H. L. Huang, M. Y. Cheng, and T. Y. Huang, "A rapid base parameter physical feasibility test algorithm for industrial robot manipulator identification using a recurrent neural network," IEEE Access, vol. 11, pp. 145692–145705, Dec. 2023.
[92] F. Alizadeh, "Interior point methods in semidefinite programming with applications to combinatorial optimization," SIAM J. Optim., vol. 5, no. 1, pp. 13–51, Feb. 1995.
[93] J. Wang and G. Wu, "A multilayer recurrent neural network for solving continuous-time algebraic Riccati equation," Neural Netw., vol. 11, no. 5, pp. 939–950, Jul. 1998.
[94] S. Ruder, "An overview of gradient descent optimization algorithms," 2016, arXiv:1609.04747.
[95] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in Proc. Int. Conf. Learn. Represent., 2015, arXiv:1412.6980.
[96] W. Khalil and D. Creusot, "SYMORO+: A system for the symbolic modeling of robots," Robotica, vol. 15, pp. 153–161, Mar. 1997.
[97] W. Khalil, A. Vijayalingam, B. Khomutenko, I. Mukhanov, P. Lemoine, and G. Ecorchard, "OpenSYMORO: An open-source software package for symbolic modelling of robots," in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron., 2014, pp. 1206–1211.
[98] M. H. Kutner, C. J. Nachtsheim, J. Neter, and W. Li, Applied Linear Statistical Models. New York, USA: McGraw-Hill/Irwin, 2005.
[99] C. C. de Wit, H. Olsson, and K. Aström, "A new model for control of systems with friction," IEEE Trans. Autom. Control, vol. 40, no. 3, pp. 419–425, Mar. 1995.
[100] K. Johanastrom and C. Canudas-de-Wit, "Revisiting the LuGre friction model," IEEE Control Syst., vol. 28, no. 6, pp. 101–114, Dec. 2008.
[101] J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Prajogo, "An integrated friction model structure with improved presliding behavior for accurate friction compensation," IEEE Trans. Autom. Control, vol. 45, no. 4, pp. 675–686, Apr. 2000.
[102] V. Lampaert, J. Swevers, and F. Al-Bender, "Modification of the Leuven integrated friction model structure," IEEE Trans. Autom. Control, vol. 47, no. 4, pp. 683–687, Apr. 2002.
[103] F. Al-Bender, V. Lampaert, and J. Swevers, "The generalized Maxwell-Slip model: A novel model for friction simulation and compensation," IEEE Trans. Autom. Control, vol. 50, no. 11, pp. 1883–1887, Nov. 2005.
[104] F. Al-Bender and J. Swevers, "Characterization of friction force dynamics," IEEE Control Syst. Mag., vol. 28, no. 6, pp. 64–81, Dec. 2008.
[105] S. Qin and X. Xue, "A two-layer recurrent neural network for nonsmooth convex optimization problems," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6, pp. 1149–1160, Jun. 2015.
[106] S. Qin, J. Feng, J. Song, X. Wen, and C. Xu, "A one-layer recurrent neural network for constrained complex-variable convex optimization," IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 3, pp. 534–544, Mar. 2018.
[107] Y. Liu, Y. Zheng, J. Lu, J. Cao, and L. Rutkowski, "Constrained quaternion-variable convex optimization: A quaternion-valued recurrent neural network approach," IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 3, pp. 1022–1035, Mar. 2020.
[108] J. Liu and X. Liao, "A projection neural network to nonsmooth constrained pseudoconvex optimization," IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 4, pp. 2001–2015, Apr. 2023.
[109] P. Miao, Y. Shen, Y. Li, and L. Bao, "Finite-time recurrent neural networks for solving nonlinear optimization problems and their application," Neurocomputing, vol. 177, pp. 120–129, Feb. 2016.
[110] L. Xiao, B. Liao, S. Li, and K. Chen, "Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations," Neural Netw., vol. 98, pp. 102–113, Feb. 2018.
[111] L. Dai, Y. Zhang, and G. Geng, "Norm-based finite-time convergent recurrent neural network for dynamic linear inequality," IEEE Trans. Industr. Inform., vol. 20, no. 3, pp. 4874–4883, Mar. 2024.
校內:2027-01-01公開