簡易檢索 / 詳目顯示

研究生: 許豐聖
Hsu, Feng-Sheng
論文名稱: 永磁式變結構風力發電機
Winding Changeover Permanent-magnet Generator for Wind Turbine
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 108
中文關鍵詞: 再生能源風力發電繞組切換可變繞組發電機準最大功率追蹤
外文關鍵詞: Variable-winding generator, Renewable energy, Winding Changeover, Wind turbine, Quasi-MPPT
相關次數: 點閱:81下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於風速不穩定之特性,風力發電機在擷取風能時,必須具有調速功能以達到高輸出效率,從而衍生出最大功率追蹤之需求。然而當系統處於高風速狀態時,其風能極為可觀,若超過額定風速以上,系統須具備過載保護功能,以避免元件損壞。
    本論文所提出之永磁式可變繞組發電機具高效率及高功率密度等優點,利用切換繞組改變發電機特性,無須藉由葉片旋角調整或電力控制,即可在額定風速以下達成準最大功率輸出、額定風速以上以定功率或定電壓輸出,故可用於系統之保護。基於容量及安全因素,一般風力發電機操作範圍有限,例如僅涵蓋最大功率控制區段,以及極小或無定功率控制區段。因此本論文利用變繞組調整發電機特性,在機械結構強度允許下,可延伸其定功率區段之範圍,且維持發電機於額定功率附近操作。本論文重點在於探討變繞組發電機之特性、適當之繞組匝數比、發電機感應電動勢常數計算法則,及繞組切換對輸出影響與特性。最後,透過實驗驗證變結構發電機之性能,包含準最大功率控制、定功率、定電壓輸出。

    Due to the unstable nature of wind power, it is necessary for wind turbines to regulate speed for better generation efficiency. Therefore, the maximum power point tracking ability is required. For high wind speed carrying large power beyond rating, the power absorbed by the system should be limited to avoid component failure. This implies that system protection is needed at high wind speed.
    In this thesis, a high efficiency and high power density permanent- magnet generator with winding changeover is applied to wind turbines. The generator can regulate its own characteristics to match the required operating point for a wide wind speed range without the need of blade pitch control or complex power electronics. The maximum power point tracking under rated wind speed and the constant power/voltage output beyond can be achieved by the proposed technique. Due to the capacity and safety concern, the operation range is generally limited for common wind turbines; e.g., very small or even no constant power region. The proposed method can extend the constant power region for a wide speed range as long as the mechanical strength is sufficient. Therefore, the generator characteristics, winding design, generator design criteria and windings witching effect are discussed in this thesis. Experiments are conducted to verify the capability of maximum power control and the constant power/voltage control.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 本文架構 4 第二章 文獻回顧與分析 5 2.1 風力發電相關發展 5 2.2 風力發電機功率曲線與控制 11 2.2.1 風力發電功率曲線 11 2.2.2 最大功率追蹤控制 12 2.2.3 定功率控制 26 2.3 可變繞組特性探討 27 第三章 可變繞組風力發電機系統組成與分析 32 3.1 台灣風力發電環境 32 3.2 可變繞組風力發電系統組成 34 3.2.1 葉片特性分析 35 3.2.2 葉片 與功率曲線 37 3.3 可變繞組發電機特性分析 40 3.3.1 繞組關係 41 3.3.2 可變繞組發電機與葉片功率關係 42 3.3.3 可變繞組發電機 設計 45 3.4 發電機功率控制 46 3.4.1 準最大功率追蹤切換 47 3.4.2 定功率與繞組切換控制 50 3.4.3 功率補償 53 第四章 實驗架構規劃與實作 59 4.1 可變繞組發電機規格參數設計 59 4.1.1 葉片特性量測 59 4.1.2 曲線繪製與發電機參數制定 62 4.2 硬體電路架構 66 4.2.1 繞組切換器 67 4.2.2 轉速估測器 71 4.2.3 電流及電壓偵測電路 72 4.2.4 功率補償控制電路 73 4.3 控制核心與程式編輯介面 74 第五章 實驗結果與討論 76 5.1 發電機反電動勢常數驗證 76 5.2 葉片與發電機功率曲線實驗 78 5.3 準最大功率追蹤切換 81 5.4 繞組切換實驗 84 5.4.1 葉片定功率切換 84 5.4.2 發電機定電壓切換 88 5.5 發電機切換功率補償實驗 90 第六章 結論與未來展望 96 參考文獻 98 附錄 103

    [1]G. Bergamasco, A. Boglietti, P. Ferraris, M. Lazzari, M. Pastorelli, and W. Viglietti, “Control of Induction Motors with Winding Commutation for Traction Applications,” IEEE Power Electronics and Variable Speed Drives, vol. 27, no. 429, pp. 459-464, Sept. 1996.
    [2]C. H. Chen, M. Y. Cheng, and M. S. Tsai, “Study on a Wide Speed Range Integrated Electrical Transmission System,” in Proceeding of the IEEE 6th International Conference on Power Electronics and Drive Systems, vol. 1, pp. 781-786, Jan. 2005.
    [3]A. M. De Broe, S. Drouilhet, and V. Gevorgian, “A Peak Power Tracker for Small Wind Turbine in Battery Charging Applications,” IEEE Transactions on Energy Conversion, vol. 14, pp. 360-367, Dec. 1999.
    [4]R. Datta and V. T. Ranganathan, “A method of tracking the peak power points for a variable speed wind energy conversion system,” IEEE Transactions on Energy Conversion, vol. 18, no. 1, pp. 163-168, Mar. 2003.
    [5]N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Perturb and Observe MPPT techniques robustness improved,” in Proceeding of the IEEE International Symposium on Industrial Electronics, vol. 2, pp. 845-850, May 2004.
    [6]D. Hohm and M. Ropp, “Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test,” in Proceeding 28th IEEE Conference on Record Photovoltaic Specialists, pp. 1699-1702, Sept. 2000.
    [7]D. Hanselman, Brushless Permanent Magnet Motor Design, The Writers’ collective, Cranston, Rhode Island. 2003.
    [8]H. Huang, and L. Chang, “Electrical Two-Speed Propulsion by Motor Winding Switching and Its Control Strategies for Electric Vehicles,” IEEE Transactions on Vehicular Technology, vol.48, pp. 607-618, Mar. 1999.
    [9]S. Heire, Grid Integration of Wind Energy Conversion System, John Wiley & Sons, Ltd. 2006.
    [10]Y. Jia, Z. Yang, and B. Cao, “A New Maximum Power Point Tracking Control Scheme for Wind Turbine,” in Proceedings of the IEEE International Conference on Power System Technology, pp. 144-148, Oct. 2002.
    [11]Y. Jia, Z. Wang, and Z. Yang, “Experimental Study of Control Strategy for Wind Generation System,” IEEE Power Electronics Specialists Conference, pp. 1202 - 1207, Jun. 2007.
    [12]E. Koutroulis and K. Kalaitzakis, “Design of a Maximum Power Tracking System for Wind-Energy-Conversion Applications,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 486-494, Apr. 2006.
    [13]T. Kume, T. Sawa, T. Yoshida, and I. Nagai, “A Wide Constant Power Range Vector-Controlled AC Motor Drive Using Winding Changeover Technique,” IEEE Transactions on Industry Applications, vol. 27, no. 5, pp. 934-939, Oct. 1991.
    [14]A. Mirecki, X. Roboam, and F. Richardeau, “Comparative Study of Maximum Power Strategy in Wind Turbines,” IEEE International Symposium on Industrial Electronics, vol. 2, pp. 993-998, May 2004.
    [15]A. Mirecki, X. Roboam and F. Richardeau, “Architecture complexity and energy efficiency of small wind turbines,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 660-670, Feb. 2007.
    [16]E. Muljadi and C. P. Butterfield, “Pitch-controlled variable-speed wind turbine generation,” IEEE Transactions on Industry Applications, vol. 37, no. 1, pp. 240-246, Jan. 2001.
    [17]Microchip, dsPIC30F Family Reference Manual, Microchip Technology Inc., 2003.
    [18]B. Neammanee, K. Krajangpan, S. Sirisumrannukul and S. Chatrattana, “Maximum Peak Power Tracking-Based Control Algorithms with Stall Regulation for Optimal Wind Energy Capture,” IEEE Power Conversion Conference, pp. 1424-1430, Apr. 2007.
    [19]T. Nakamura, S. Morimoto, M. Sanada, Y. Takeda, “Optimum control of IPMSG for wind generation system,” IEEE Power Conversion Conference, vol. 3, no. 2-5, pp. 1435-1440, Apr. 2002.
    [20]C. Patsios, A. Chaniotis, A. Kladas, “A Hybrid Maximum Power Point Tracking System for Grid-Connected Variable Speed Wind-Generators,” IEEE Power Electronics Specialists Conference, pp. 1749-1754, Jun. 2008.
    [21]D. Sera, T. Kerekes, R. Teodorescu, and F. Blaabjerg, “Improved MPPT method for rapidly changing environmental conditions,” in Proceedings of the IEEE International Symposium on Industrial Electronics, vol. 2, pp. 1420-1425, Jul. 2006.
    [22]M. M. Swamy, T. J. Kume, A. Maemura, and S. Morimoto, “Extended high speed operation via electronic winding change method for AC motors,” IEEE Industry Applications Conference, vol. 1, pp. 608-614, Oct. 2004.

    [23]T. Senjyu, R. Sakamoto, N. Urasaki, T. Funabashi, H. Fujita, H. Sekine, “Output power leveling of wind turbine generator for all operating regions by pitch angle control,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 467-475, Jun. 2006.
    [24]M. C. Tsai, M. C. Chou, C. L. Chu, “Control of a Variable-Winding Brushless with the Application in Electric Scooters,” IEEE Electric Machines and Drives Conference, pp. 922-925, Jun. 2001.
    [25]Q. Wang and L. Chang, “An independent maximum power extraction strategy for wind energy conversion systems,” IEEE Electrical and Computer Engineering, vol. 2, pp. 1142-1147, May 1999.
    [26]工業技術研究院,風力示範推廣計畫第二年度,經濟部能源科技研究發展計畫九十年度執行報告,2001。
    [27]工業技術研究院,風力示範推廣計畫第四年度,經濟部能源科技研究發展計畫九十二年度執行報告,2003。
    [28]工業技術研究院,風力示範推廣計畫,經濟部能源科技研究發展計畫全程執行報告,2005。
    [29]工業技術研究院,風力機關鍵元件計畫期末報告,經濟部能源科技研究發展計畫九十五年度執行報告,2006。
    [30]于俊傑,風力發電最大功率追蹤技術之研究,中原大學電機系碩士論文,2004
    [31]江威君,我國風電發展沿革,經濟部能源局,2008。
    [32]朱瑞墉,風力發電專輯-細說風力發電現況,台灣綜合研究院,2008。
    [33]李奇錄,可變繞組發電機應用於海流發電系統之研究,國立成功大學系統及船舶機電工程系碩士論文,2008。
    [34]呂威賢,台灣風力發電史,工業技術研究院,2008。
    [35]李杰、王得利、陳國呈、屈克慶,用於永磁同步機風力發電的新型最大功率點跟蹤方法,上海大學學報,2008。
    [36]周明昌,變結構無刷直流馬達控制在電動車之應用,國立成功大學機械系碩士論文,2003。
    [37]香港可再生能源網:http://re.emsd.gov.hk/
    [38]翁鳳英,歐盟小型風力發電機應用現況,經濟部能源局,2008。
    [39]張希良,風力發電技術,新文京開發,2007。
    [40]陳正虎,高性能混合式電動機車驅動系統之設計與實現,國立成功大學電機系博士論文,2006。
    [41]陳秋麟、王順忠,電機機械基本原理,麥格羅希爾,2004。
    [42]康宗仁,永磁式同步發電機之風力發電功率控制系統之研製,台灣科技大學電機系碩士論文,2005
    [43]經濟部能源委員會,臺灣能源統計年報,2002
    [44]劉文斌,以數位信號處理器為基礎之風力驅動永磁式同步發電機最大功率追蹤控制策略研究,聖約翰技術學院自動化及機電整合系碩士論文,2004。
    [45]http://namedkao.myweb.hinet.net/forsale/basic.htm
    [46]世界風能協會(World Wind Energy Association, WWEA)
    http://www.wwindea.org/home/index.php
    [47]http://www.windenergy.com/index_wind.htm

    下載圖示 校內:2011-09-01公開
    校外:2011-09-01公開
    QR CODE