| 研究生: |
陳令珏 Chen, Ling-Jyue |
|---|---|
| 論文名稱: |
大規模製造金-半導體混合表面增強拉曼散射於液態與氣態分子感測 Large-scale fabrication of Au-semiconductor-hybridized SERS substrate for liquid and gas molecule sensors |
| 指導教授: |
黃志嘉
Huang, Chih-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 二氧化錫 、免SERS 基版 、氣體感測 、自潔功能 、重複使用 |
| 外文關鍵詞: | Tin dioxide, unmodified SERS substrate, gas sensing, self-cleaning functionality, reusability |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面增強拉曼散射(SERS)技術具有高靈敏度、良好選擇性和不需要複雜的樣品前處理,被廣泛應用於食品安全、化學傳感器、生物藥物分析和催化過程等領域。將半導體材料與金屬結合可進一步提升SERS基板性能並降低成本。半導體與金屬的混合能有效促進電子轉換,使SERS基板具有高靈敏性和多重檢測功能。半導體材料還具有自潔清洗功能,使SERS基板表面保持乾淨,減少干擾,提高準確性和靈敏度,同時提高基板的可重現性。大量生產中,利用更便宜的材料並實現大面積製造可以降低成本。本研究開發在大面積(直徑70mm)濾紙基板上吸附二氧化錫半導體奈米顆粒(L-SnO2-Au),利用紫外照射讓電子電洞對複合使奈米金顆粒被還原並沉積,大基板能夠進行裁切變成小基板(直徑6mm)達到大量生產的目的。利用SEM、TEM、XRD和 EDS驗證二氧化錫上能夠成長出金奈米顆粒(50 nm-100 nm),並且利用EDS Mapping可以看到奈米顆粒是均勻沉積於纖維素上。藉由裁切機器的基板能夠在紅光波段到近紅光外光的波長下拉曼(633 nm、671 nm、785 nm 和 1064 nm)檢測孔雀石綠、羅丹明 6G與4-硝基苯硫酚。在785nm拉曼下、本基板對於孔雀石綠檢測達到10-10並計算AEF達5.9x 108。不需要修飾就能夠選擇性捕獲揮發性(VOCs)如甲苯、苯甲醛、4-NTP、4-ATP與2-ATP,進而實現即時的SERS檢測。對於4-NTP氣體分子達到ppb的等級。此外,該基板藉由紫外光照射能夠重複性使用。基板具有高靈敏度、快速檢測和可重複使用的優點能夠廣泛的被應用。
Surface-enhanced Raman scattering (SERS) technology offers high sensitivity, excellent selectivity, and eliminates the need for complex sample preparation. It finds wide applications in areas such as food safety, chemical sensors, biomedical drug analysis, and catalytic processes. The combination of semiconductors and metals promotes electron transfer, enhancing sensitivity and enabling multiple detections, while the self-cleaning functionality of semiconductor materials maintains a clean surface, reducing interference and improving accuracy, sensitivity, and reproducibility of SERS substrates. In large-scale production, the use of cheaper materials and achieving large-area manufacturing can reduce costs. In this study, we developed a large-area (70 mm) paper-based substrate adsorbed with tin dioxide semiconductor nanoparticles (L-SnO2-Au) and utilized ultraviolet irradiation to induce electron-hole pair formation, reducing and depositing the nano-gold particles. The large substrate could be cut into smaller substrates (6 mm) for mass production purposes. The growth of gold nanoparticles on tin dioxide was confirmed using SEM, TEM, XRD, and EDS, while EDS mapping demonstrated the uniform deposition of nanoparticles on cellulose fibers.By using a cutting machine, the substrates were able to detect malachite green, Rhodamine 6G, and 4-nitrophenol in the red and near-infrared spectral range of Raman (633 nm, 671 nm, 785 nm, and 1064 nm). Under 785nm Raman excitation, the detection of malachite green reached 10-10, with a calculated enhancement factor (AEF) of 5.9x 108. Selective capture of volatile organic compounds (VOCs) such as toluene, benzaldehyde, 4-NTP, 4-ATP, and 2-ATP was achieved without the need for modification, enabling real-time SERS detection. The detection limit for 4-NTP gas molecules reached the ppb level. Additionally, the substrate could be reused through UV light irradiation. With high sensitivity, rapid detection, and reusability, the substrate can be widely applied.
1. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical society reviews, 1998. 27(4): p. 241-250.
2. Mosca, S., et al., Spatially offset Raman spectroscopy. Nature Reviews Methods Primers, 2021. 1(1): p. 21.
3. Raman, C.V. and K.S. Krishnan, A new type of secondary radiation. Nature, 1928. 121(3048): p. 501-502.
4. Tolles, W.M., et al., A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS). Applied Spectroscopy, 1977. 31(4): p. 253-271.
5. Shih, W.-C., K. Bechtel, and M.S. Feld, Noninvasive glucose sensing with Raman spectroscopy. Analytical chemistry of in vivo glucose measurements. Hoboken, NJ: John Wiley & Sons, 2009: p. 391-419.
6. Zong, C., et al., Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical reviews, 2018. 118(10): p. 4946-4980.
7. Hou, W. and S.B. Cronin, A review of surface plasmon resonance‐enhanced photocatalysis. Advanced Functional Materials, 2013. 23(13): p. 1612-1619.
8. Nie, S. and S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science, 1997. 275(5303): p. 1102-1106.
9. Kumar, S., et al., Experimental evidence of a twofold electromagnetic enhancement mechanism of surface-enhanced Raman scattering. The Journal of Physical Chemistry C, 2020. 124(38): p. 21215-21222.
10. Zhang, Y., et al., Dipole, quadrupole and octupole plasmon resonance modes in non-concentric nanocrescent/nanodisk structure: local field enhancement in the visible and near infrared regions. Optics express, 2012. 20(3): p. 2924-2931.
11. Cong, S., et al., Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. The Innovation, 2020. 1(3): p. 100051.
12. Laurenčíková, A., et al., GaP nanocones covered with silver nanoparticles for surface-enhanced Raman spectroscopy. Applied Surface Science, 2018. 461: p. 149-153.
13. López, I., et al., Electrophoretic deposition (EPD) of silver nanoparticles and their application as surface-enhanced Raman scattering (SERS) substrates. Applied surface science, 2013. 280: p. 715-719.
14. Schwartzberg, A.M., et al., Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. The Journal of Physical Chemistry B, 2004. 108(50): p. 19191-19197.
15. Kneipp, J., et al., Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing. Analytical chemistry, 2008. 80(11): p. 4247-4251.
16. Huang, R., et al., Structural and charge sensitivity of surface-enhanced Raman spectroscopy of adenine on silver surface: A quantum chemical study. The Journal of Physical Chemistry C, 2013. 117(45): p. 23730-23737.
17. Jiang, X., et al., Double Metal Co–Doping of TiO2 Nanoparticles for Improvement of their SERS Activity and Ultrasensitive Detection of Enrofloxacin: Regulation Strategy of Energy Levels. ChemistrySelect, 2017. 2(10): p. 3099-3105.
18. Yang, L., et al., A novel ultra‐sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Advanced Science, 2019. 6(12): p. 1900310.
19. Liu, Y., et al., Metal–semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Materials Horizons, 2021. 8(2): p. 370-382.
20. Zhai, X., et al., Enhanced optoelectronic performance of CVD-grown metal–semiconductor NiTe2/MoS2 heterostructures. ACS applied materials & interfaces, 2020. 12(21): p. 24093-24101.
21. Wu, J., et al., Reusable and long-life 3D Ag nanoparticles coated Si nanowire array as sensitive SERS substrate. Applied Surface Science, 2019. 494: p. 583-590.
22. Thuy, N.T.N., et al., Optimum fabrication parameters for preparing high performance SERS substrates based on Si pyramid structure and silver nanoparticles. RSC advances, 2021. 11(50): p. 31189-31196.
23. Bandarenka, H.V., et al., Progress in the development of SERS-active substrates based on metal-coated porous silicon. Materials, 2018. 11(5): p. 852.
24. Aleknavičienė, I., et al., Low-cost SERS substrate featuring laser-ablated amorphous nanostructure. Applied Surface Science, 2022. 571: p. 151248.
25. Bharati, M.S.S. and V.R. Soma, Flexible SERS substrates for hazardous materials detection: recent advances. Opto-Electronic Advances, 2021. 4(11): p. 210048.
26. Han, S., et al., Sensitive and reliable identification of fentanyl citrate in urine and serum using chloride ion-treated paper-based SERS substrate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021. 251: p. 119463.
27. Linh, V.T.N., et al., A facile low-cost paper-based SERS substrate for label-free molecular detection. Sensors and Actuators B: Chemical, 2019. 291: p. 369-377.
28. Kim, S., et al., Early and direct detection of bacterial signaling molecules through one-pot Au electrodeposition onto paper-based 3D SERS substrates. Sensors and Actuators B: Chemical, 2022. 358: p. 131504.
29. Wu, L., et al., Strawberry-like SiO2/Ag nanocomposites immersed filter paper as SERS substrate for acrylamide detection. Food chemistry, 2020. 328: p. 127106.
30. Li, J., et al., Cauliflower-inspired 3D SERS substrate for multiple mycotoxins detection. Analytical chemistry, 2019. 91(6): p. 3885-3892.
31. Yang, L., et al., Clean and reproducible SERS substrates for high sensitive detection by solid phase synthesis and fabrication of Ag‐coated Fe3O4 microspheres. Journal of Raman Spectroscopy, 2012. 43(7): p. 848-856.
32. Kandjani, A.E., et al., Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable ‘hot-spots’ for highly reproducible molecular sensing. Journal of colloid and interface science, 2014. 436: p. 251-257.
33. Koppmann, R., Volatile organic compounds in the atmosphere. 2008: John Wiley & Sons.
34. Wang, H., et al., Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chinese Science Bulletin, 2013. 58: p. 724-730.
35. Nakhleh, M.K., et al., Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS nano, 2017. 11(1): p. 112-125.
36. Phillips, M., et al., Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis, 2012. 92(4): p. 314-320.
37. Haick, H., et al., Assessment, origin, and implementation of breath volatile cancer markers. Chemical Society Reviews, 2014. 43(5): p. 1423-1449.
38. Lin, C.-C., et al., Evaluation of impact factors on VOC emissions and concentrations from wooden flooring based on chamber tests. Building and Environment, 2009. 44(3): p. 525-533.
39. Kawamura, K., et al., Development of a novel hand-held toluene gas sensor: Possible use in the prevention and control of sick building syndrome. Measurement, 2006. 39(6): p. 490-496.
40. Kumar, P., et al., Coordination polymers: Opportunities and challenges for monitoring volatile organic compounds. Progress in Polymer Science, 2015. 45: p. 102-118.
41. Duarte, K., et al., Direct-reading methods for analysis of volatile organic compounds and nanoparticles in workplace air. TrAC Trends in Analytical Chemistry, 2014. 53: p. 21-32.
42. Vesely, P., et al., Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry. Journal of Agricultural and Food Chemistry, 2003. 51(24): p. 6941-6944.
43. Sabourin, P.J., W.E. Bechtold, and R.F. Henderson, A high pressure liquid chromatographic method for the separation and quantitation of water-soluble radiolabeled benzene metabolites. Analytical biochemistry, 1988. 170(2): p. 316-327.
44. Leong, S.X., et al., Noninvasive and point-of-care surface-enhanced raman scattering (SERS)-based breathalyzer for mass screening of coronavirus disease 2019 (COVID-19) under 5 min. ACS nano, 2022. 16(2): p. 2629-2639.
45. Yang, K., et al., A Programmable Plasmonic Gas Microsystem for Detecting Arbitrarily Combinated Volatile Organic Compounds (VOCs) with Ultrahigh Resolution. ACS nano, 2022. 16(11): p. 19335-19345.
46. Gao, W., et al., Rapid and highly sensitive SERS detection of fungicide based on flexible “wash free” metallic textile. Applied Surface Science, 2020. 512: p. 144693.
47. Suresh, V., et al., Fabrication of large-area flexible SERS substrates by nanoimprint lithography. ACS Applied Nano Materials, 2018. 1(2): p. 886-893.
48. Kim, D., et al., Low-cost, high-performance plasmonic nanocomposites for hazardous chemical detection using surface enhanced Raman scattering. Sensors and Actuators B: Chemical, 2018. 274: p. 30-36.
49. Chen, W., et al., Gas sensing properties and mechanism of nano-SnO2-based sensor for hydrogen and carbon monoxide. Journal of Nanomaterials, 2012. 2012: p. 1-1.
50. Muhammed Shafi, P. and A. Chandra Bose, Impact of crystalline defects and size on X-ray line broadening: A phenomenological approach for tetragonal SnO2 nanocrystals. AIP Advances, 2015. 5(5): p. 057137.
51. Jubu, P., et al., Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data–a case study of β-Ga2O3. Journal of Solid State Chemistry, 2020. 290: p. 121576.
52. Karmaoui, M., et al., One-step synthesis, structure, and band gap properties of SnO2 nanoparticles made by a low temperature nonaqueous sol–gel technique. ACS omega, 2018. 3(10): p. 13227-13238.
53. Tang, J., et al., Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV–vis spectral properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018. 191: p. 513-520.
54. Amendola, V. and M. Meneghetti, Size evaluation of gold nanoparticles by UV− vis spectroscopy. The Journal of Physical Chemistry C, 2009. 113(11): p. 4277-4285.
55. Cheng, L., et al., Constructing functionalized plasmonic gold/titanium dioxide nanosheets with small gold nanoparticles for efficient photocatalytic hydrogen evolution. Journal of colloid and interface science, 2019. 555: p. 94-103.
56. Cho, T.J. and V.A. Hackley, Fractionation and characterization of gold nanoparticles in aqueous solution: asymmetric-flow field flow fractionation with MALS, DLS, and UV–Vis detection. Analytical and bioanalytical chemistry, 2010. 398: p. 2003-2018.
57. Berberidou, C., et al., Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Applied Catalysis B: Environmental, 2007. 74(1-2): p. 63-72.
58. Steidtner, J. and B. Pettinger, Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Physical Review Letters, 2008. 100(23): p. 236101.
59. Lee, C.-W., et al., Invisible-ink-assisted pattern and written surface-enhanced Raman scattering substrates for versatile chem/biosensing platforms. Green Chemistry, 2018. 20(23): p. 5318-5326.
60. Fu, Z. and R. Chen, Study of complexes of tannic acid with Fe (III) and Fe (II). Journal of analytical methods in chemistry, 2019. 2019.
61. Krishnamurthy, S., et al., Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale research letters, 2014. 9: p. 1-9.
62. Pugazhenthiran, N., et al., Photocatalytic degradation of ceftiofur sodium in the presence of gold nanoparticles loaded TiO2 under UV–visible light. Chemical Engineering Journal, 2014. 241: p. 401-409.
63. Yang, Y., et al., Preparation of reduced graphene oxide/meso-TiO2/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue. Applied Surface Science, 2016. 369: p. 576-583.
64. Rauf, M. and S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical engineering journal, 2009. 151(1-3): p. 10-18.
65. Babu, B., et al., Novel in-situ synthesis of Au/SnO2 quantum dots for enhanced visible-light-driven photocatalytic applications. Ceramics International, 2019. 45(5): p. 5743-5750.
66. Kitching, H., A. Kenyon, and I. Parkin, The interaction of gold and silver nanoparticles with a range of anionic and cationic dyes. Physical Chemistry Chemical Physics, 2014. 16(13): p. 6050-6059.
67. Ribeiro, C., et al., The Effect of SnO2 Surface Properties on CO2 Photoreduction to Higher Hydrocarbons. ChemCatChem: p. e202201534.
68. Wang, N., Low temperature dealloying preparation of extremely fine double-levels nano-SnO2 particles with excellent photocatalytic properties. Applied Surface Science, 2020. 506: p. 144970.
69. Hao, R., et al., Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Applied Catalysis B: Environmental, 2016. 187: p. 47-58.
70. Chen, J., et al., Fabrication of a ternary plasmonic photocatalyst CQDs/Ag/Ag2O to harness charge flow for photocatalytic elimination of pollutants. Applied Catalysis B: Environmental, 2016. 192: p. 134-144.
71. Juergensen, S., P. Kusch, and S. Reich, Resonant Raman Scattering of 4‐Nitrothiophenol. physica status solidi (b), 2020. 257(12): p. 2000295.
72. Darienzo, R.E., T. Mironava, and R. Tannenbaum, Raman signal enhancement by quasi-fractal geometries of Au nanoparticles. Journal of nanoscience and nanotechnology, 2019. 19(8): p. 4740-4746.
73. Zhao, C., et al. Gold nanoparticles modified double-tapered fiber for SERS detection. in Journal of Physics: Conference Series. 2017. IOP Publishing.
74. Xiao, G.-N. and S.-Q. Man, Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chemical Physics Letters, 2007. 447(4-6): p. 305-309.
75. Akanny, E., et al., Development and Comparison of Surface-Enhanced Raman Scattering Gold Substrates for In Situ Characterization of ‘Model’Analytes in Organic and Aqueous Media. Chemistry Africa, 2019. 2(2): p. 309-320.
76. Li, N., et al., Detection of chlortetracycline hydrochloride in milk with a solid SERS substrate based on self-assembled gold nanobipyramids. Analytical Sciences, 2020. 36(8): p. 935-940.
77. Shen, R., et al., A dendritic Ag induced by the polyaniline on copper sheet for facilely and highly efficient SERS detection. Materials Chemistry and Physics, 2022. 287: p. 126346.
78. Wang, L.-P., Y.-B. Huang, and Y.-H. Lai, Surface enhanced Raman scattering activity of dual-functional Fe3O4/Au composites. Applied Surface Science, 2018. 435: p. 290-296.
79. Ge, K., et al., Detection of formaldehyde by Surface-Enhanced Raman spectroscopy based on PbBiO2Br/Au4Ag4 nanospheres. ACS Applied Nano Materials, 2021. 4(10): p. 10218-10227.
80. Gudun, K., et al., Commercial gold nanoparticles on untreated aluminum foil: versatile, sensitive, and cost-effective SERS substrate. Journal of Nanomaterials, 2017. 2017.
81. Jonker, D., et al., A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars. Nanoscale Advances, 2021. 3(17): p. 4926-4939.
82. Shvalya, V., et al., Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Applied Physics Reviews, 2020. 7(3): p. 031307.
83. Ding, S.-Y., et al., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2017. 46(13): p. 4042-4076.
84. Macleod, H.A., Thin-film optical filters. 2017: CRC press.
85. Sun, A.Y., et al., Diverse substrate-mediated local electric field enhancement of metal nanoparticles for nanogap-enhanced Raman scattering. Analytical chemistry, 2021. 93(9): p. 4299-4307.
86. Simula, S., et al., Measurement of the dielectric properties of paper. Journal of Imaging Science and Technology, 1999. 43(5): p. 472-477.
87. Liu, Q.-J., Z.-T. Liu, and L.-P. Feng, First-principles calculations of structural, electronic and optical properties of tetragonal SnO2 and SnO. Computational materials science, 2010. 47(4): p. 1016-1022.
88. Martinelli, G., et al., A study of the moisture effects on SnO2 thick films by sensitivity and permittivity measurements. Sensors and Actuators B: Chemical, 1995. 26(1-3): p. 53-55.
89. Wolkoff, P., Trends in Europe to reduce the indoor air pollution of VOCs. Indoor air, 2003. 13: p. 5-11.
90. Zuraimi, M., et al., A comparative study of VOCs in Singapore and European office buildings. Building and environment, 2006. 41(3): p. 316-329.
91. Hu, X., et al., Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: off-surface plasmon resonance condition. The Journal of Physical Chemistry C, 2007. 111(19): p. 6962-6969.
92. Nikoobakht, B. and M.A. El-Sayed, Surface-enhanced Raman scattering studies on aggregated gold nanorods. The Journal of Physical Chemistry A, 2003. 107(18): p. 3372-3378.
93. Su, H., et al., Surface-enhanced Raman spectroscopy study on the structure changes of 4-Mercaptophenylboronic Acid under different pH conditions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017. 185: p. 336-342.
94. El-Khoury, P.Z., Tip-Enhanced Raman Chemical and Chemical Reaction Imaging in H2O with Sub-3-nm Spatial Resolution. Journal of the American Chemical Society, 2023. 145(12): p. 6639-6642.
95. Zhou, Q., et al., In situ SERS interrogation of catalytic reaction on three-dimensional gold nanowire carpeted polycarbonate membranes. Analytical Methods, 2014. 6(13): p. 4625-4632.
96. Joshi, R., et al., Raman Spectral Analysis for Quality Determination of Grignard Reagent. Applied Sciences, 2020. 10(10): p. 3545.
97. Yu, J., et al., Electroreductive coupling of benzaldehyde by balancing the formation and dimerization of the ketyl intermediate. Nature Communications, 2022. 13(1): p. 7909.
98. Kuttner, C., et al., SERS and plasmonic heating efficiency from anisotropic core/satellite superstructures. Nanoscale, 2019. 11(38): p. 17655-17663.
99. Xiao, Z., et al., Recent development in nanocarbon materials for gas sensor applications. Sensors and Actuators B: Chemical, 2018. 274: p. 235-267.
校內:2028-08-23公開