簡易檢索 / 詳目顯示

研究生: 陳彥銘
Chen, Yen-Ming
論文名稱: 基於不平坦地形檢測之模糊補償法於雙足機器人步態軌跡最佳化及其控制法
Uneven Terrain Detection based Fuzzy Compensation Method for Bipedal Robot Gait Trajectory Optimization and Its Control Scheme
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 111
中文關鍵詞: 地形適應模糊系統人形機器人雙連桿線性倒單擺模型
外文關鍵詞: Terrain Adaptation, Fuzzy System, Humanoid Robot, Double-Link Linear Inverted Pendulum Model (DLIPM)
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人形機器人在行走時常會遇到許多外在條件的影響,地面的干擾是一個很大的因素。在實際情況中,機器人行經的地面可能會有起伏不一的變化。本論文探討了人形機器人在行走過程中的動態步態生成、模糊控制系統的應用及其與地形變化的適應能力。在與不平坦地面的接觸過程中,機器人將透過座標軸參考系以及角度的轉換運算,迅速偵測出地面角度變化的程度。並透過偵測出的角度變化,在迅速適應地面的過程中改變目前運動的軌跡變化,使機器人能夠完成當前一步地行走。為了提高下一步行走的可行性與穩定性運用模糊系統去微調當前適應地形的角度變化。模糊系統可以用來處理地形變化帶來的不確定性,提升下一步成功行走的能力。同時在適應地形的過程中,使用了髖關節補償器以及碰撞阻尼器來保持行走的穩定性,防止在重新規劃運動軌跡前機器人即失去平衡而摔倒。本論文透過在MuJoCo模擬以及實體實驗中建立數個不同的地形場景來驗證所提出的方法在不同地形上行走的能力。實驗成果顯示在各種方向上的地形變化下機器人能夠成功的度過障礙,如同行走在平地中一樣。

    Humanoid robots often encounter many external conditions when walking, and ground disturbance is a major factor. In reality, the ground through which the robot walks may have different variations of ups and downs. This thesis explores the dynamic gait generation, the application of a fuzzy control system, and the adaptability of humanoid robots to terrain changes during the walking process. In the process of contact with uneven terrain, the robot will quickly detect the degree of angle change of the ground through the reference system of coordinate axes and the conversion algorithm of angles. And through the detected angle change, the robot will change the trajectory of the current movement in the process of quickly adapting to the ground, so that the robot can complete this step of walking. In order to improve the feasibility and stability of the next walking step, the fuzzy system is used to adjust the angle change of the current adaptation to the terrain. The fuzzy system can be used to process the uncertainty caused by the terrain changes and improve the ability of the next step to walk successfully. Meanwhile, the Hip Compensator and crash dampener are used to maintain the stability of walking during the process of adapting to the terrain and to prevent the robot from losing its balance and falling down before re-planning the motion trajectory. In this thesis, several different terrain scenarios are set up in MuJoCo simulation as well as physical experiments to verify the ability of the proposed method to walk on different terrains. The experimental results show that the robot can successfully cross barriers under varying terrain conditions in different directions, as if it is walking on flat ground.

    摘 要 I Abstract II Acknowledgements III Content IV List of Figures VII List of Tables X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Related Work 3 1.3 Thesis Organization 5 Chapter 2 Robot Hardware System 7 2.1 Introduction 7 2.2 Hardware Specifications 8 2.2.1 The Configuration of Robot 8 2.2.2 Four-bar linkage mechanism 13 2.2.3 Passively rotating footplate 13 2.3 Actuator 14 2.3.1 MYACTUATOR motor 14 2.3.2 Dynamixel motor 15 2.3.3 USB-CAN-A 17 2.4 Sensor 17 2.4.1 IMU 18 2.4.2 Force Sensing Resistor 19 2.4.3 Camera 21 2.5 Power System 22 2.6 Control System 24 2.6.1 Computer 25 2.7 Summary 27 Chapter 3 Gait Pattern Generation 29 3.1 Overview 29 3.2 Gait Pattern Generator 30 3.2.1 Conventional LIPM 30 3.2.2 Double-Link LIPM 32 3.3 The Forward Kinematic and the Inverse Kinematics 35 3.3.1 Forward Kinematic 35 3.3.2 Inverse Kinematics 39 3.4 Variable height of foot drop 42 3.5 Summary 44 Chapter 4 Terrain Adaptation with Fuzzy System 46 4.1 Introduction 46 4.2 Posture Calculator 48 4.3 ZMP and CoP 51 4.4 Adaptation of the terrain 54 4.4.1 Walking Period 54 4.4.2 Ankle Compensator 55 4.4.3 Fuzzy Secondary Detection 57 4.5 Hip Compensator 64 4.6 Crash Dampeners 64 4.7 Heuristic Algorithms 66 4.8 Summary 67 Chapter 5 Simulation and Experimental Results 68 5.1 Introduction 68 5.2 Simulation Environment 69 5.3 Scenario I: move upward 71 5.4 The Comparison with compensator and without compensator 77 5.5 Scenario II: Roll direction 80 5.6 Scenario III: Complex terrain 84 5.7 Summary 91 Chapter 6 Conclusions and Future Work 92 6.1 Conclusions 92 6.2 Future Work 93 References 95

    [1] Y.-D. Hong, B.-J. Lee, and J.-H. Kim, “Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 4, pp. 783-789, 2011.
    [2] G.-c. Yu, Y.-x. Liu, and X.-h. Li, “Humanoid robot gait planning based on 3D linear inverted pendulum model,” Journal of Computer Applications, vol. 32, no. 9, pp. 2643-2647, 2013.
    [3] T. Komura, A. Nagano, H. Leung, and Y. Shinagawa, “Simulating pathological gait using the enhanced linear inverted pendulum model,” IEEE Trans Biomed Eng, vol. 52, no. 9, pp. 1502-13, Sep 2005.
    [4] T.-H. S. Li, Y.-F. Ho, P.-H. Kuo, Y.-T. Ye, and L.-F. Wu, “Natural walking reference generation based on double-link LIPM gait planning algorithm,” IEEE Access, vol. 5, pp. 2459-2469, 2017.
    [5] T. Sato, S. Sakaino, E. Ohashi, and K. Ohnishi, “Walking trajectory planning on stairs using virtual slope for biped robots,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1385-1396, 2011.
    [6] M. Shimojo, T. Araki, M. Aigou, and M. Ishikawa, “A ZMP sensor for a biped robot,” presented at the Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006.
    [7] H.-K. Shin and B. K. Kim, “Energy-Efficient gait planning and control for biped robots utilizing the allowable ZMP region,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 986-993, 2014.
    [8] M. Crisostomo, A. P. Coimbra, and J. P. Ferreira, “ZMP trajectory reference for the sagittal plane control of a biped robot based on a human CoP and gait,” presented at the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009.
    [9] P. Sardain and G. Bessonnet, “Zero moment point—measurements from a human walker wearing robot feet as shoes,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 34, no. 5, pp. 638-648, 2004.
    [10] P. Sardain and G. Bessonnet, “Forces acting on a biped robot center of pressure—zero moment point,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 34, no. 5, pp. 630-637, 2004.
    [11] L. Humphrey, H. Hemami, K. Barin, and A. Krishnamurthy, “Simulated responses to support surface disturbances in a humanoid biped model with a vestibular-like apparatus,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 1, pp. 109-119, 2010.
    [12] K.-S. Hwang, J.-L. Lin, and K.-H. Yeh, “Learning to adjust and refine gait patterns for a biped robot,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 12, pp. 1481-1490, 2015.
    [13] M. Claros, J. J. Rodriguez, and R. Soto, “Balance control of a biped robot in the coronal plane using foot sole CoP trajectories,” presented at the 11th IEEE International Conference on Control & Automation (ICCA), 2014.
    [14] J. R. Guadarrama-Olvera, S. Kajita, and G. Cheng, “Preemptive foot compliance to lower impact during biped robot walking over unknown terrain,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8006-8011, 2022.
    [15] S. Min Yoo, S. Wook Hwang, D. Ha Kim, and J. Hyeon Park, “Biped robot walking on uneven terrain using impedance control and terrain recognition algorithm,” presented at the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), 2018.
    [16] J. Jo and Y. Oh, “Impedance control of humanoid walking on uneven terrain with centroidal momentum dynamics using quadratic programming,” presented at the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.
    [17] S. Sato, K. Kojima, N. Hiraoka, K. Okada, and M. Inaba, “Humanoid walking system with CNN-based uneven terrain recognition and landing control with swing-leg velocity constraints,” presented at the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.
    [18] Q. Wang, Q. Li, and M. Zhao, “Accurate terrain estimation for humanoid robot based on disturbance state observer,” IEEE Access, vol. 9, pp. 144634-144645, 2021.
    [19] M. Lee et al., “Dynamic humanoid locomotion over rough terrain with streamlined perception-control pipeline,” presented at the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.
    [20] J. Andreu-Perez, F. Cao, H. Hagras, and G.-Z. Yang, “A self-adaptive online brain–machine interface of a humanoid robot through a general type-2 fuzzy inference system,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 1, pp. 101-116, 2018.
    [21] T.-H. S. Li, Y.-T. Su, S.-H. Liu, J.-J. Hu, and C.-C. Chen, “Dynamic balance control for biped robot walking using sensor fusion, kalman filter, and fuzzy logic,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4394-4408, 2012.
    [22] C. Dong, Z. Yu, X. Chen, H. Chen, Y. Huang, and Q. Huang, “Adaptability control towards complex gound based on fuzzy logic for humanoid robots,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 6, pp. 1574-1584, 2022.
    [23] T.-H. S. Li et al., “Fuzzy double deep Q-network-based gait pattern controller for humanoid robots,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 1, pp. 147-161, 2022.
    [24] S. Corporation. “The official website of SolidWorks.” https://www.solidworks.com/ (accessed Jun.-04, 2024).
    [25] MYACTUATOR. “RMD-X8 S2.” https://www.myactuator.com/product-page/rmd-x8-s2-1-36 (accessed Jun.-04, 2024).
    [26] MYACTUATOR. “The oficial website of MYACTUATOR.” https://www.myactuator.com/ (accessed Jun.-04, 2024).
    [27] ROBOTIS. “The official website of ROBOTIS.” https://www.robotis.us/ (accessed Jun.-05, 2024).
    [28] ROBOTIS. “PH54-100-S500-R.” https://www.robotis.us/dynamixel-ph54-100-s500-r/ (accessed Jun.-05, 2024).
    [29] ROBOTIS. “PH42-020-S300-R.” https://www.robotis.us/dynamixel-ph42-020-s300-r/ (accessed Jun.-04, 2024).
    [30] Waveshare. “USB-CAN-A.” https://www.waveshare.net/wiki/USB-CAN-A (accessed Jun.-05, 2024).
    [31] ROBOTIS. “U2D2.” https://emanual.robotis.com/docs/en/parts/interface/u2d2/ (accessed Jun.-05, 2024).
    [32] Xsens. “The datasheet of MTi 1-series development Kit.” https://www.farnell.com/datasheets/2859132.pdf (accessed.
    [33] Xsens. “The official website of Xsens.” https://www.movella.com/products/xsens (accessed Jun.-05, 2024).
    [34] Xsens. “The datasheet of MTi 1-series.” https://www.farnell.com/datasheets/2634707.pdf (accessed.
    [35] SY40. “SY40-20KG.” https://shop.cpu.com.tw/product/56023/info/ (accessed Jun.-05, 2024).
    [36] A. S.r.l. “The introduction of arduino micro.” https://store-usa.arduino.cc/products/arduino-micro?selectedStore=us (accessed Jun.-05, 2024).
    [37] I. Corporation. “The introduction of depth camera D435i.” https://www.intelrealsense.com/depth-camera-d435i/ (accessed Jun.-05, 2024).
    [38] I. Corporation. “The introduction of depth camera D435.” https://www.intelrealsense.com/depth-camera-d435/ (accessed Jun.-05, 2024).
    [39] L. M. W. E. Co. “The datasheet of RSP-2000 series.” https://www.meanwell.com.tw/productPdf.aspx?i=364 (accessed Jun.-05, 2024).
    [40] BATEMO. “LG INR21700-M50LT.” https://www.batemo.com/products/batemo-cell-explorer/lg-energy-solution-inr21700-m50lt/ (accessed Jun.-05, 2024).
    [41] N. Corporation. “Jetson orin NX 16GB.” https://www.nvidia.com/zh-tw/autonomous-machines/embedded-systems/jetson-orin/ (accessed Jun.-05, 2024).
    [42] P. Robot. “(a) NVIDIA jetson orin NX 16 GB developer kit.” https://shop.playrobot.com/products/mco0237 (accessed Jun.-05, 2024).
    [43] K. Harada et al., “Toward human-like walking pattern generator,” presented at the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009.
    [44] M. Vukobratović, B. Borovac, D. Surla, and D. Stokić, Biped Locomotion. 1990.
    [45] M. Dekker, “Zero-moment point method for stable biped walking,” Eindhoven University of Technology, 2009.
    [46] J. P. Ferreira, M. M. Crisostomo, A. P. Coimbra, and B. Ribeiro, “Control of a biped robot with support vector regression in sagittal plane,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 9, pp. 3167-3176, 2009.
    [47] O. Amine and M. Mohammed, “Generating a-star algorithm admissible heuristics using a dynamic dataloader on neural networks, Enhanced With Genetic Algorithms, on a Distributed Architecture,” IEEE Access, vol. 11, pp. 18356-18373, 2023.
    [48] K. Choi, D.-H. Jang, S.-I. Kang, J.-H. Lee, T.-K. Chung, and H.-S. Kim, “Hybrid algorithm combing genetic algorithm with evolution strategy for antenna design,” IEEE Transactions on Magnetics, vol. 52, no. 3, pp. 1-4, 2016.
    [49] S. H. Hojjati, A. Ebrahimzadeh, M. Najimi, and A. Reihanian, “Sensor selection for cooperative spectrum sensing in multiantenna sensor networks based on convex optimization and genetic algorithm,” IEEE Sensors Journal, vol. 16, no. 10, pp. 3486-3487, 2016.
    [50] B. V. Ha, M. Mussetta, P. Pirinoli, and R. E. Zich, “Modified compact genetic algorithm for thinned array synthesis,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1105-1108, 2016.
    [51] MuJoCo. “The official website of MuJoCo.” https://mujoco.org/ (accessed Jun.-05, 2024).

    無法下載圖示 校內:2030-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE