簡易檢索 / 詳目顯示

研究生: 翁立昌
Wung, Lih-Chang
論文名稱: 超寬頻參考傳輸系統之新穎信號設計及偵測架構
Novel Signaling and Detection Schemes for Ultra-wideband Transmitted-Reference Systems
指導教授: 蘇賜麟
Su, Szu-Lin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 85
中文關鍵詞: 無線通訊超寬頻參考傳輸平衡參考傳輸系統
外文關鍵詞: Wireless Communication, Ultra-Wideband (UWB), Transmitted-Reference (TR), Balanced TR system (BTR)
相關次數: 點閱:141下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    超寬頻脈波電系統近年來在高速室內無線通訊應用之中頗受矚目,其應用領域包含家庭娛樂、無線影像下載、無線區域網路(wireless LAN)及無線USB等。由於該系統使用次奈秒(sub-nanasecond)週期之波形,其波形優良的時間解析(time-resolution)能力足以用於解出傳輸通道造成的多重路徑接收信號。然而為了要充分收集多重路徑中的傳送訊號能量,則必須使用具有高度硬體複雜度的犁耙式(Rake)接收器,使得接收機硬體設計因而複雜化。
    為克服上述困難,有學者提出一種稱為參考傳輸(transmitted-reference, TR)的新型系統。由於參考信號構成發射信號的一部分,接收機可以很方便地利用這個已知的傳輸參考信號進行資料調變信號的解調,使得此系統之接收機無需進行複雜的傳輸通道估測工作,並得以大幅簡化其硬體設計。然而,原始參考傳輸架構的低複雜度偵測能力並非憑空獲致,由於參考信號並未承載任何資料位元,實際上會造成50%能量/頻寬的消耗。這項缺失已成為近年來研究改進超寬頻參考傳輸系統的熱門研究課題。
    針對上述缺失,本論文提出一種足以增強性能表現的發射信號設計及接收信號架構,稱為雙平均N位元差分暨平衡參考傳輸系統(A2NDTR/BTR)。此新系統具有在維持整體系統性能表現條件下增進資料傳輸率的能力,此能力實際上是由整合新式的信號設計及偵測技術與其他優良之干擾及噪音壓制技術所共同達成。最後,電腦模擬顯示此新系統與其他系統相比較時,在維持相同或是較佳的位元錯誤率之下,同時能夠達成更高的資料傳輸率。

    Abstract
    Ultra-Wideband (UWB) impulse radio systems have gained much attention in high speed indoor wireless communications recently, their applications include home entertainment, wireless indoor downloading, wireless LAN, wireless USB, and so on. These systems apply sub-nanosecond pulses and are able to resolve the multipath caused by the communication channel due to their fine time-resolution capability. However, a Rake receiver with high hardware complexity is required to take full advantage of the available signal energy, which complicates the hardware design of the receiver.
    To remedy this difficulty, an improved scheme called the transmitted reference (TR) systems is proposed. Since a reference signal is transmitted along with the data-modulated signal, this known signal can be conveniently used to demodulate the data-modulated signal in the receiver. Thus, TR systems do not require the complex task of channel estimation and render a simple receiver structure. However, the low-complexity detection in the conventional TR scheme is achieved at the cost of 50% energy/bandwidth disadvantage, due to the fact that the reference signal carries no data. This disadvantage has become the popular research focus of UWB TR systems.
    In this dissertation a performance-enhanced signal and detection scheme, namely the dual averaging N-bit differential transmitted reference/balanced transmitted reference (A2NDTR/BTR) system, is proposed to increase the data rate while still maintain the overall system performance. Numerical results suggest that this proposed scheme is able to achieve superior data rate while maintain the same or better bit error performance as compared with others.

    Contents Chinese Abstract i English Abstract ii Contents iii List of Tables v List of Figures vi Abbreviations and Symbols viii Chapter 1 Introduction 1 1.1 UWB Advantages and Disadvantages 1 1.2 UWB Applications 3 1.3 UWB Regulations 5 1.4 Organization of the Dissertaton 7 Chapter 2 UWB Channel Modeling 8 2.1 UWB Channel Model 8 Chapter 3 Transmitted-Reference (TR) Systems 17 3.1 Transmitter Designs 18 3.1.1 Simple TR (STR) Transmitter 18 3.1.2 Balanced TR (BTR) Transmitter 20 3.2 Receiver Designs and Performance Analysis 21 3.2.1 STR Receiver and Performance Analysis 22 3.2.2 Averaged TR (ATR) Receiver and Performance Analysis 28 3.2.3 BTR Receiver and Performance Analysis 31 3.2.4 ATR/BTR Receiver and Performance Analysis 33 3.2.5 A2TR/BTR Receiver and Performance Analysis 35 3.3 Summary 38 Chapter 4 Differential TR (DTR) Systems 44 4.1 DTR System 44 4.1.1 Transmitter Design 44 4.1.2 Receiver Design and Performance Analysis 45 4.2 Doublet-Shifted TR (DsTR) System 47 4.2.1 Transmitter Design 47 4.2.2 Receiver Design and Performance Analysis 49 4.3 ANDTR/BTR System 53 4.3.1 Transmitter Design 53 4.3.2 Receiver Design and Performance Analysis 55 4.4 A2NDTR/BTR System 58 4.4.1 Receiver Design and Performance Analysis 58 4.5 Summary 61 Chapter 5 Orthogonalized TR Systems 67 5.1 Slightly Frequency-Shifted Reference (FSR) System 68 5.1.1 Transmitter Design 68 5.1.2 Receiver Design and Performance Analysis 69 5.2 Code-Orthogonalized TR (COTR) System 71 5.2.1 Transmitter Design 71 5.2.2 Receiver Design and Performance Analysis 73 5.3 New Scheme 74 5.3.1 Transmitter Design 75 5.3.2 Receiver Design and Performance Analysis 77 5.4 Summary 78 Chapter 6 Conclusion 82 Reference 84

    Reference
    [1] R. J.-M. Cramer, R. A. Scholtz, and M. Z. Win, “Evaluation of an ultra-wide-band propagation channel,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 5, pp. 561-570, May 2002.
    [2] “Notice of inquiry in the matter of revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” FCC Docket Number (No.) 98-208/ET No. 98-153.
    [3] M. Z. Win, R. A. Scholtz, “Impulse radio: how it works,” IEEE Communications Letters, vol. 2, no. 2, pp. 36-38, February 1998.
    [4] G. R. Aiello, and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave Magazine, vol. 4, no. 2, pp. 36-47, June 2003.
    [5] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread spectrum communications. vol. 3, 1985.
    [6] J. Forester, “Channel modeling sub-committee report final,” Tech. Rep. IEEE P802.15-02/368r5-SG3a, November 2002.
    [7] S. S. Ghassemadeh, and V. Tarokh, “UWB path loss characterization in residential environments,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 501-504, June 2003
    [8] T. Rappaport, Wireless Communications: principles and practice. 2nd Ed., Pearson Education Pte. Ltd., 2002.
    [9] M. Z. Win, and R. A. Scholtz, “On the energy capture of ultra-wide bandwidth signals in dense multipath environment,” IEEE Communications Letters, vol .2, no. 9, pp. 245 - 247, Apr. 2002.
    [10] Bo Hu and Norman C. Beaulieu, “Accurate evaluation of multiple-access performance in TH-PPM and TH-BPSK UWB systems,” IEEE Transactions on Communications, vol. 52, no. 10, pp. 1758 - 1766, October 2004.
    [11] R. Hoctor and H. Tomlinson, “Delayed-hopped transmitted-reference RF communications,” Proc. IEEE UWBST 2002, May 2002.
    [12] Yi-Ling Chao and Robert A. Scholtz, “Ultra-Wideband Transmitted Reference Systems”, IEEE Transactions on Vehicular Technology, Vol. 54, No. 5, September 2005.
    [13] Y-L. Chao and R. A. Scholtz, “Ultra-Wideband Transmitted Reference Systems”, IEEE Transactions on Vehicular Technology, vol. 54, no. 5, September 2005.
    [14] Y-L. Chao and R. A. Scholtz, “Optimal and Suboptimal Receivers for Ultra-wideband Transmitted Reference Systems,” Global Telecommunications Conference, 2003. IEEE Globecom 2003.

    [15] D. I. Kim and T. Jia, “Multiple Access Performance of Balanced UWB Transmitted-Reference Systems in Multipath”, IEEE Transactions on Wireless Communications, vol. 7, no. 3, March 2008.
    [16] D. I. Kim and T. Jia, “M-ary Orthogonal Coded/Balanced Ultra-Wideb and Transmitted-Reference Systems in Multipath”, IEEE Transactions on Communications, vol. 56, no. 1, January 2008.
    [17] D. I. Kim and T. Jia, “Analysis of Channel-Averaged SINR for Indoor UWB Rake and Transmitted Reference Systems”, IEEE Transactions on Communications, vol. 55, no. 10, October 2007.
    [18] Y-L. Chao and R. A. Scholtz, “Ultra-Wideband Transmitted Reference Systems”, IEEE Transactions on Vehicular Technology, vol. 54, no. 5, September 2005.
    [19] M. G. Khan, J. Nordberg, and I. Claesson, ”An Energy-efficient Signaling and Detection Scheme for Transmitted Reference UWB Systems”, IEEE International Networking and Communication Conference, 2008.
    [20] D. Goeckel and Q. Zhang, “Slightly Frequency-Shifted Reference Ultra-Wideband(UWB) Radio: TR-UWB without the Delay Element,” Proceedings of the Military Communication Conference, October, 2005.
    [21] Q. Zhang, and D. L. Goeckel “Multi-differential slightly frequency- shifted reference ultra-wideband (UWB) radio”, Proceedings Annual Conference on Information Sciences and Systems, pp. 615 - 620, March, 2006.
    [22] D. L. Goeckel, and Q. Zhang, “Slightly frequency-shifted reference ultra- wideband (UWB) radio”, IEEE Transactions on Communications, vol. 55, no. 3, pp. 508 - 519, March 2007.
    [23] Q. Zhang, D. L. Goeckel, J. Burkhart, B. K. Mui, N. Merrill, M. Carrier, and R. Jackson, “FSR-UWB (TR-UWB without the delay element): effect of impulse dithering and experimental results”, Proceedings International Conference on Ultra-wideband, pp. 315 - 320, September 2006.
    [24] J. Zhang, H. Y. Hu, L. K. Liu, and T. F. Li, “Code-orthogonalized transmitted-reference ultra-wideband (UWB) wireless communication system,” Proceedings International Conference on Wireless Communications, Networking and Mobile Computing, pp. 528-532, September 2007.
    [25] S. Farahmand, X. Luo, and G. Giannakis, “Orthogonally-Spread Block Transmission for Ultra-Wideband Impulse Radios,” IEEE Transactions on Wireless Communications, vol. 7, no. 10, October 2008.
    [26] 姜琦凡(2010),「超寬頻傳輸參考系統之新穎訊號設計與偵測技術」,國立成功大學電腦與通訊工程研究所碩士論文。

    下載圖示 校內:2012-08-19公開
    校外:2012-08-19公開
    QR CODE