簡易檢索 / 詳目顯示

研究生: 林政緯
Lin, Cheng-Wei
論文名稱: 基於視覺之即時光纖對位研究
A Study on Real-Time Vision-Based Optical Fiber Alignment
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 83
中文關鍵詞: 可變結構控制器光纖對位壓電致動器視覺伺服
外文關鍵詞: IVSC, fiber alignment, Piezo actuator, visual servoing
相關次數: 點閱:131下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,光纖傳輸已經很廣泛地應用於長距離的通訊上,這是由於光纖具有低成本、高頻寬的優點。然而,為了要達到高品質的傳輸,發展一個高精度的對位與組裝技術是不可被忽略的重點。因此,本論文利用壓電致動器(PEA)搭配機器視覺發展一光纖微定位平台,本論文所發展之對位技術,主要可分為兩個部份。首先為伺服控制部份,因壓電致動器為一具有磁滯現象之非線性元件,故本論文提出以B-spline近似模型為基礎之前饋反磁滯控制器,以消除其磁滯現象。此外,並藉由積分可變結構控制器改善其因不確定性之因素所產生的誤差量,實驗結果顯示微定位平台之步階響應可滿足設計之規格。第二為視覺方面,一個視覺回授訊號的準確與否與計算時間長短關係到光纖對位之性能,本論文提出一結合視覺與位移回授之新型視覺伺服控制架構與一個處理時間較短且較為準確之影像處理演算法,並且使用線性插值器產生一較平滑之視覺命令,再透過卡爾曼濾波器進行位置預測改善視覺落後的現象。實驗結果顯示本論文所提之方法效果良好。

    Recently, fiber optic transmission has become one of the most popular choices for long-distance fixed communication links due to attractive features such as low cost and high bandwidth. However, to maintain high quality transmission, the development of a high precision alignment technique for optical fiber assembly cannot be overlooked. Therefore, this research focuses on developing a vision based optical fiber alignment platform that is actuated by a piezoelectricity device. The technique developed in this project can be divided into two parts. The first part is “servo control”. Since the piezoelectricity actuated device (PEA) is a nonlinear element with hysteresis property, this study proposes a feedforward inverse hysteresis controller based on a B-spline approximation model to eliminate the effects due to hysteresis. In addition, the integral variable structure controller (IVSC) is also adopted to reduce the error due to noise/parameter uncertainty. Experimental results indicate that the obtained step response can satisfy the design specifications. The second part is “vision”. The accuracy of the visual feedback signal will affect the performance of optical fiber alignment. In order to deal with this difficulty, a new visual servoing structure that combines the use of vision and position feedback and an image processing algorithm which requires less processing time and is more accurate are developed in this study. In addition, linear interpolation on vision command is performed, and a Kalman filter is also used to predict the visual command at the next time instant to cope with the visual latency problem. Experimental results show that the proposed approach exhibits satisfactory performance.

    中文摘要.......................................Ⅰ 英文摘要.......................................Ⅱ 誌謝...........................................Ⅲ 目錄...........................................Ⅳ 圖目錄.........................................Ⅵ 表目錄.........................................Ⅹ 第一章 緒論..................................1 1-1、 研究動機與目的........................1 1-2、 文獻回顧..............................4 1-3、 論文大綱..............................7 第二章 壓電致動器介紹........................9 2-1、 壓電效應..............................9 2-2、 潛變效應..............................11 2-3、 磁滯現象..............................12 2-4、 磁滯曲線模型簡介......................15 2-4-1、 馬克斯威爾模型........................15 2-4-2、 Preisach模型..........................17 2-4-3、 多項式近似模型........................19 第三章 壓電致動平台控制......................21 3-1、 控制架構..............................21 3-2、 系統建模..............................22 3-2-1、 磁滯曲線建模..........................23 3-2-2、 線性模型建模..........................31 3-3、 前饋補償..............................33 3-4、 回饋控制器............................35 3-4-1、 積分可變結構控制器(IVSC) .............35 3-4-2、 控制器設計............................38 第四章 視覺伺服控制..........................40 4-1、 視覺伺服控制架構介紹..................40 4-2、 影像處理..............................45 4-2-1、 重心法................................46 4-2-2、 隨機式Hough轉換求取直線方程式法.......48 4-2-3、 基於重心求取直線方程式法..............51 4-3、 卡爾曼濾波器..........................55 第五章 實驗結果..............................59 5-1、 實驗軟硬體設備概述....................59 5-2、 壓電致動平台定位實驗..................66 5-3、 雜訊干擾下之影像處理強健度實驗........69 5-4、 卡爾曼預測實驗........................71 5-5、 光纖對位實驗..........................74 第六章 結論與建議............................77 參考文獻.......................................79

    [1] C.R. Witham, M.W. Beranek, B. R. Carlisle, E. Y. Chan, and D. G. Koshinz, “Fiber-Optic Pigtail Assembly and Attachment Alignment Shift Using a Low-Cost Robotic Platform,” IEEE Electronic Components and Technology Conf, pp.21-25, 2000.
    [2] D.T. Pham, and M. Castellani, “Intelligent control of fibre optic components assembly,” in Proc. of Instn. Mech. Engrs., Vol. 215 Part B, pp.1177-1189, 2001.
    [3] C.L. Chu, S.H. Lin, Z.Y. Fu, and K.K. Yen, “The Development of an Optical Fiber Alignment and Fusion Machine,” in IEEE Int. Conf. on Mechatronics, pp.472-476, July 10-12 2005.
    [4] D.T. Pham, and M. Castellani, “Evolutionary fuzzy logic system for intelligent fibre optic components assembly,” in Proc. of Instn. Mech. Engrs., Vol. 216 Part C, pp. 571-581, 2002.
    [5] L. Piegl, and W. Tiller, The NURBS Book. Second edition, Springer, 1997.
    [6] C.J. Lin, and S.R. Yang, “Modeling of a Piezo-Actuator Position Stage Based on a Hysteresis Observer,” Asian Journal of Control, Vol. 7, No. 1, pp. 73-80, Mar. 2005.
    [7] G. Michael, and C. Nikola, “Modeling Piezoelectric Stack Actuator for Control of Micromanipulation,” IEEE Control System, pp.69-79, June 1997
    [8] G. Song, J. Zhao, X. Zhou, and J. Alexis De Abreu-Garcia, “Tracking Control of a Piezoceramic Actuator With Hysteresis Compensation Using Inverse Preisach Model,” IEEE/ASME Trans. on Mechatronics, pp.198-209, Vol. 10, No. 2, April 2005.
    [9] 馮榮豐,奈微米工程精密製程與量測技術,滄海書局,2002年
    [10] S. Hutchinson, G. D. Hager, and P. I. Corke, “A Tutorial on Visual Servo Control,” IEEE Trans. on Robotics and Automation, Vol. 12, pp.651-670, 1996.
    [11] S.H. Kim, and B.K. Kim, “Analysis on Time-Delay of Commercial Off-The-Shelf Vision System considering Motion-Blur,” in Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol.4, pp.2080-2085, Oct. 29-Nov. 03, 2001.
    [12] G. Welch, and G. Bishop, An Introduction to the Kalman Filter. Technical Report, University of North Carolina at Chapel Hill, 2001.
    [13] E. Brookner, Tracking and Kalman Filtering Made Easy. Wiley Interscience, 1998.
    [14] H. Fujimoto, Y. Hori, and A. Kawamura, “Perfect Tracking Control Based on Multirate Feedforward Control With Generalized Sampling Periods,” IEEE Trans. on Industrial Electronics, pp.636-644, Vol. 48, No. 3, June 2001.
    [15] 顧孝鈞,壓電微致動器之製作與量測,碩士論文,大葉大學機械工程系,2003年。
    [16] P. Ge, and M. Jouaneh, “Modeling Hysteresis in Piezoceramic Actuators,” Precision Engineering, pp. 211-221, Vol.17, No.3, July 1995.
    [17] H. Hu, and R. Ben Mrad, “A Discrete-Time Compensation Algorithm for Hysteresis in Piezoceramic Actuators,” Mechanical Systems and Signal Processing, Vol. 18, pp. 169-185, 2004.
    [18] T. L. Chern, and Y. C. Wu, “Design of Integral Variable Structure Controller and Application to Electrohydraulic Velocity Servo systems,” IEE Proceedings-D, Vol. 138, No. 5, pp. 439-444, September 1991.
    [19] H. Hu, and R. Ben Mrad, “On the Classical Preisach Model for Hysteresis in Piezoceramic Actuators,” Mechatronics, Vol. 13, No.3, pp. 85-94, March 2003.
    [20] M. Sharma, S. P. Singh, B. L. Sachdeva, “Fuzzy logic based active vibration control of beams using piezoelectric patches,” in Proc. of SPIE - The International Society for Optical Engineering, Vol. 5062, No. 2, pp. 538-544, 2002.
    [21] M. Sasaki, M. Kawafuku, T. Katsuno, and F. fijisawa, “Neural Network for Trajectory Tracking Control of a Flexible Micro-Manipulator,” in Proc. of IEEE Int Conf Syst Man Cybern, pp. 648-654, 1996.
    [22] P. Ge, and M. Jouaneh, “Tracking Control of a Piezoceramic Actuator,” IEEE Trans. on Control Systems Technology, Vol. 4, No. 3, pp.209-216, May 1996.
    [23] G. F. Franklin, J. D. Powell, and E. N. Abbas, Feedback Control of Dynamic Systems. Third Edition, Addison Wesley, 1994.
    [24] L. E. Weiss, A. C. Sanderson, and C. P. Neuman, “Dynamic Sensor-Based Control of Robots with Visual Feedback,” IEEE Journal of Robotics and Automation, Vol. 3, No. 5, pp. 404-417, Oct. 1987.
    [25] P. I. Corke, and M. G. Good, “Dynamic Effects in Visual Closed-Loop Systems,” IEEE Trans. on Robotics and Automation, Vol.12, No.5, pp.671-683, Oct. 1996.
    [26] M.S. Branicky, Member, IEEE, V.S. Borkar, Senior Member, IEEE, and S.K. Mitter, Fellow, “A Unified Framework for Hybrid Control:Model and Optimal Control Theory,” IEEE Trans. on Automatic Control, Vol. 43, No. 1, pp.31-45, Jan. 1998.
    [27] F. Conticelli, B. Allotta, and C. Colombo, “Hybrid visual servoing: A combination of nonlinear control and linear vision,” Robotics and Autonomous Systems, Vol. 29, No.4, pp. 243-256, 1999.
    [28] R.C. Gonzalez, and R.E. Woods, Digital Image Processing. Second Edition, Addison Wesley, 2002.
    [29] T. C. Chen, and K. L. Chung, “A New Randomized Algorithm for Detecting Lines,” Real-Time Imaging, Vol. 7, No.6, pp. 473-482, December 2001.
    [30] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision. Thomson, 1999
    [31] “卡爾曼濾波器在嵌入式控制系統中的應用“,電子工程專輯,2002年。

    下載圖示 校內:2009-08-21公開
    校外:2009-08-21公開
    QR CODE