簡易檢索 / 詳目顯示

研究生: 董學鴻
Tung, Hsueh-Hung
論文名稱: 整合品質機能展開與設計結構矩陣架構發展模組設計-以射出成型機為例
Integrated Quality Function Deployment and Design Structure Matrix Framework Development Module Design-Example of Injection Molding Machine
指導教授: 劉說芳
Liu, Shuo-Fang
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系碩士在職專班
Department of Industrial Design (on-the-job training program)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 111
中文關鍵詞: 品質機能展開設計結構矩陣模組化細分化市場射出成型機
外文關鍵詞: Quality Function Deployment, Design Structure Matrix, Modularization, Market Segmentation, Injection Molding Machine
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今科技發展迅速及產品日趨多元競爭下,消費者對於產品已不僅是標準需求,而是更著重向於客製化滿足。
    然而,客製化也面臨相關難題。一方面,若等客戶提出需求後再進行開發,則需遞延出貨時間。另一方面,若單一客製化產品不符合顧客的期待,易發生產品壽命終結或設計變更的狀況, 因而延伸出庫存呆滯物料、維護營運成本提高等問題。 因此,能否提供顧客多樣配套模式讓其選擇是企業生存的關鍵突破點。
    客製化的實現來自目標市場需求信息輸入與產品內部對應需求關係的輸出,從信息輸入到結果輸出過程中有大量複雜訊息且緊密關聯的活動關係,所有信息中的活動都是在滿足輸入點的需求,而活動最終輸出結果將會是滿足顧客多樣配套選擇的模型。為解決客製化的模糊性與複雜性,本研究提出品質機能展開(QFD)與設計結構矩陣(DSM)結合的設計方法,目的是整合顧客需求輸入之活動信息關係,發展模組化配套設計,信息輸入是以利基細分化市場為目標確認顧客需求,應用QFD將顧客需求轉換工程特性與零件特性得出相關權重,以進行模組配套措施的評估。然後應用DSM來解決產品內部活動關係,包括系統與零組件之間交互關係和聚類模組。在此過程中,QFD將重要信息傳遞至設計結構矩陣評估系統複雜程度與零組件模組形成,最後整合設計出可供顧客選擇或替換的多元需求模組配套。
    本研究發展了產品模組化設計的架構方法,應用QFD與DSM的整合,將市場需求轉換工程規格,再將其與零組件整合為客製化模組。本研究提出之方法可滲透瞭解細分利基產業獨特需求有效延長產品生命週期,降低零組件變化程度而減少產品設計變更與失敗成本。利用本研究提出之方法適當備存標準模組可減少出貨時間與維修更換,為產業和顧客提供便利和保障,未來也可針對規格模組提升技術減少開發時間,增加細分化產業上的競爭優勢。

    Nowadays, With the rapid development of technology and the increasingly diversified competition of products, consumers are not only demanding products for standards, but also focusing on customized satisfaction.
    However, customization also faces related problems. On the one hand, if we wait for the customer's demand before developing, we need to delay the delivery time. On the other hand, if a single customized product does not meet the expectations of customers, it is prone to end-of-life or design changes, resulting in problems such as sluggish inventory of materials and increased maintenance and operation costs. Therefore, the ability to provide customers with a variety of supporting models for their choices is the key breakthrough point for business survival.
    The realization of customization includes the input of target market demand information and the output of the corresponding internal demand relationship of the product. From information input to result output, there are a lot of complex information and closely related activities. All activities in the information satisfy the input point. The final output of the event will be a model that satisfies a variety of support customer choices. In order to solve the ambiguity and complexity of customization, this research proposes a design method that combines quality function deployment (QFD) and design structure matrix (DSM). The purpose is to integrate the activity information relationship input by customer needs and develop modular supporting design, Information input is based on the niche segmented market as the goal to confirm customer needs, and QFD is used to transform customer needs into engineering characteristics and part characteristics to obtain relevant weights for evaluation of module supporting measures. Then DSM is used to solve the internal activity relationship of the product, including the interaction between the system and the components and the clustering relationship module. In this process, QFD transfers important information to the design structure matrix to evaluate the complexity of the system and the formation of component modules, and finally integrates a multi-module supporting design that can be selected or replaced by customers.
    This research has developed an architecture method for product modular design, applying the integration of QFD and DSM to transform market requirements into engineering specifications, and then integrate them with components into customized modules. The method proposed in this study can penetrate and understand the unique needs of segmented industries to effectively extend the product life cycle, reduce the degree of component changes, and reduce product design changes and failure costs. Using the method proposed in this research to properly stock standard modules can reduce delivery time and maintenance and replacement, and provide convenience and guarantee for the industry and customers. In the future, it can also reduce development time by upgrading technology for specification modules, increasing the competitive advantage in the segmentation industry.

    摘要 i ABSTRACT ii 誌謝 v 目錄 vi 表目錄 ix 圖目錄 x 縮寫列表 xii 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 研究限制 6 1.4 論文架構 7 第2章 文獻探討 9 2.1 射出成型機原理 9 2.1.1 射出成形機類型 10 2.1.2 射出單元結構 11 2.1.3 射出成型週期 14 2.2 細分化市場 16 2.2.1 細分化市場定義 16 2.2.2 細分化市場的意義 16 2.2.3 細分過程 16 2.2.4 宏觀細分市場辨識分類 19 2.2.5 價值鏈中的五種策略 20 2.3 品質機能展開 21 2.3.1 品質機能的展開 21 2.3.2 品質展開模型 24 2.3.3 顧客需求 25 2.4 設計結構矩陣(DSM) 26 2.4.1 產品架構的DSM 26 2.4.2 矩陣元素依賴關係 27 2.4.3 元素的劃分 28 2.4.4 元素的聚類 29 2.4.5 分解結構映射於DSM的階層關係 30 2.5 產品模組化 31 2.5.1 模組化的三種觀點 31 2.5.2 MFD模組功能部屬 33 2.5.3 產品模組化的接口設計 35 2.5.4 零件表 36 2.5.5 模組的多元設計 36 2.5.6 模組管理和系列產品管理 39 2.6 小結 41 第3章 研究方法 43 3.1 系統模塊整合流程 45 3.1.1 Step-1定義需求系統功能 45 3.1.2 Step-2 系統聚類劃分 46 3.1.3 Step-3整合系統模塊目標 46 3.2 零組件模塊整合流程 46 3.2.1 Step-4 零組件聚類劃分 46 3.2.2 Step-5 定義系統重要零組件 46 3.2.3 Step-6整合零組件模塊目標 47 3.3 設計模組選用表 47 3.3.1 Step-7 發展產業模組選用表 47 第4章 案例研究 48 4.1 Phase 1-系統模塊整合流程 48 4.1.1 Step 1-細分化市場 48 4.1.2 Step 1-市場訪談 50 4.1.3 Step 1-定義需求 52 4.1.4 Step 1-品質屋 53 4.1.5 Step 2-射出單元系統功能 62 4.1.6 Step 2-系統功能設計結構矩陣 62 4.1.7 Step 3-整合工程特性系統架構 64 4.2 Phase 2-零組件模塊整合流程 65 4.2.1 Step 4- 系統零組件設計結構矩陣 65 4.2.2 Step 5-零件特性展開 79 4.2.3 Step 6-整合系統零組件模塊架構 83 4.3 Phase 3-機能模組整合設計表 93 4.4 小結 95 第5章 結論與建議 96 5.1 研究結論 96 5.2 研究討論與建議 101 英文參考文獻 103 中文參考文獻 107 附錄A 市場調查表 108 附錄B 專家問卷調查表 109 附錄C 全電射出單元爆炸圖 111

    Aoyama, K., & Uno, Y. (2003). Modular design supporting system with a step-by-step design approach. In EcoDesign (Vol. 2003, p. 100).
    Aoyama, K., Takechi, S., & Nomoto, T. (2001). Modular design supporting system with management of interface information. In Proceeding of Eco-design 2001.
    Cabigiosu, A., Zirpoli, F., & Camuffo, A. (April 01, 2013). Modularity, interfaces definition and the integration of external sources of innovation in the automotive industry. Research Policy, 42, 3, 662-675.
    Calcagno, M. (2002, May). Dynamics of modularity. A critical approach. In Euram Conference (Vol. 9, No. 11).
    Chen, L. H., & Ko, W. C. (2009). Fuzzy approaches to quality function deployment for new product design. Fuzzy sets and systems, 160(18), 2620-2639.
    Dekkers, R. (2006). Engineering management and the order entry point. International Journal of Production Research, 44(18-19), 4011-4025.
    Danilovic, M., & Sandkull, B. (2005). The use of dependence structure matrix and domain mapping matrix in managing uncertainty in multiple project situations. International journal of project management, 23(3), 193-203.
    Eppinger, S. D., & Browning, T. R. (2012). Design structure matrix methods and applications. MIT press.
    Fixson, S. K. (2001). Three perspectives on modularity–A Literature Review of a Product Concept for Assembled Hardware Products. Massachusetts Institute of Technology. Engineering Systems Division.
    Goodship, V. (Ed.). (2017). ARBURG practical guide to injection moulding, 2nd edition. Smithers Rapra.
    Giddaluru, M. P., Gao, J. X., & Bhatti, R. (2015). A modular product structure based methodology for seamless information flow in PLM system implementation. Computer-Aided Design and Applications, 12(6), 742-752.
    Hosseinpour, A. (2014). Integration of axiomatic design with quality function deployment for sustainable modular product design.
    Islamoglu, N. E., Ryu, K., & Moon, I. (2014). Labour productivity in modular assembly: a study of automotive module suppliers. International Journal of Production Research, 52(23), 6954-6970.
    Johannaber, F (2008). Injection Molding Machines : A User's Guide.(4th ed). Hanser Gardner.
    Kim, K., Chhajed, D.(2000) Commonality in product design: Cost saving, valuation change and cannibalization, European Journal of Operational Research,125(3),602-621.
    Lampel, J., & Mintzberg, H. (1996). Customizing customization. Sloan management review, 38(1), 21-30.
    Laughlin, J. L., & Taylor, C. R. (1991). An approach to industrial market segmentation. Industrial Marketing Management, 20(2), 127-136.
    Liu, A., Hu, H., Zhang, X., & Lei, D. (2017). Novel two-phase approach for process optimization of customer collaborative design based on fuzzy-QFD and DSM. IEEE Transactions on Engineering Management, 64(2), 193-207.
    Luh, D. B., Ko, Y. T., & Ma, C. H. (2011). A structural matrix-based modelling for designing product variety. Journal of Engineering Design, 22(1), 1-29.
    Martin, M. V., & Ishii, K. (November 01, 2002). Design for variety: developing standardized and modularized product platform architectures. Research in Engineering Design : Theory, Applications and Concurrent Engineering, 13, 4, 213-235.
    Maritan, D. (2015). Practical manual of quality function deployment. Switzerland: Springer International Publishing.
    Pine, B. J. (1993). Mass Customization. Vol. 17. Boston: Harvard business school press.
    Piller, F. T. (2007). Observations on the present and future of mass customization. International Journal of Flexible Manufacturing Systems, 19(4), 630-636.
    Patel, P. C., & Jayaram, J. (2014). The antecedents and consequences of product variety in new ventures: An empirical study. Journal of Operations Management, 32(1-2), 34-50.
    Rosato, D. V., & Rosato, M. G. (2012). Injection molding handbook. Springer Science & Business Media.
    Shamsuzzoha, A. H. M. (2010). Modular product development for mass customization. Vaasan yliopisto.
    Steward, D. V. (1981). The design structure system: A method for managing the design of complex systems. IEEE transactions on Engineering Management, (3), 71-74.
    Shamsuzzoha, A. H. M., Helo, P., & Kekale, T. (2014). Applying Design Structure Matrix (DSM) Method in Mass Customizations. Operations and Supply Chain Management: An International Journal, 1(1), 15.
    Schleich, H., Schaffer, J., & Scavarda, L. F. (2007, July). Managing complexity in automotive production. In 19th international conference on production research (Vol. 100). Valparaiso Chile.
    Tonks, D G. (1998). Exploring the principles of market segmentation. (Tonks, D G (1998) Exploring the principles of market segmentation. In: The CIM Handbook of Strategic Marketing. Butterworth-Heinemann, Oxford, pp. 103-120. ISBN 0750626135.) Butterworth-Heinemann.
    Wang, C. S., Lin, P. Y., & Chang, T. R. (2010, April). Green quality function development and modular design structure matrix in product development. In The 2010 14th International Conference on Computer Supported Cooperative Work in Design (pp. 94-99). IEEE.
    Wang, H. J., Wu, X., & Wang, X. (2010, October). Research on product modularization and module management. In 2010 International Conference on Artificial Intelligence and Education (ICAIE) (pp. 309-311). IEEE.
    Yassine, A., & Braha, D. (2003). Complex concurrent engineering and the design structure matrix method. Concurrent Engineering, 11(3), 165-176.
    Yu, S., Yang, Q., Tao, J., & Xu, X. (2015). Incorporating Quality Function Deployment with modularity for the end-of-life of a product family. Journal of Cleaner Production, 87, 423-430.
    水野滋、赤尾洋二、品質機能展開研究小組,品質機能展開法:如何有效掌握顧客需求,和昌發行,1987。
    胡雲宏(2015)。射出成形寶典-現場實務運用工具書(第四版)。塑膠工業技術發展中心。
    唐敦兵、錢曉明、劉建剛(2009)。基於設計結構矩陣DSM的產品設計與開發。北京。科學出版社。

    無法下載圖示 校內:2027-01-14公開
    校外:2027-01-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE