簡易檢索 / 詳目顯示

研究生: 王奕達
Wang, Yi-Da
論文名稱: 應用於診斷轉換錯誤的高效能自動向量產生以及觀測點插入流程
Efficient Pattern Generation and Observation Point Insertion for Transition Fault Diagnosis
指導教授: 李昆忠
Lee, Kuen-Jong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 54
中文關鍵詞: 錯誤診斷診斷向量產生轉換錯誤
外文關鍵詞: fault diagnosis, diagnostic test generation, transition fault
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程的快速演進,錯誤診斷將變得越來越重要,在此論文中,我們提出了兩個技術來提升錯誤診斷的品質,第一個技術利用高效能的診斷向量產生器產生測試向量來分開錯誤對或是辨別等效錯誤對,第二個技術則是利用加入觀測點的方式來區分錯誤對。我們主要用兩個方法來產生診斷向量,第一個方法為錯誤失活法,在產生診斷向量時只激活其中一個錯誤,另一個錯誤保持未激活的狀態,藉此分開錯誤對;第二個方法為錯誤傳遞法,在產生診斷向量時同時激活兩個錯誤,並使得這兩個錯誤在觀測端可以觀測到不同的錯誤響應。在標準電路 ISCAS89 (ITC99)的實驗結果顯示,有99.99% (99.99%)的錯誤對可以被我們的方法分開或是判斷為等效錯誤對。但仍有一些無法被處理的錯誤對,我們會利用加入一些觀測點到電路中,藉此分開這些尚未被分開的錯誤對。由實驗結果顯示,只需要加入2(109)個觀測點,在實驗電路ISCAS89 (ITC99)中所有的錯誤對皆可以被分開或是判斷成等效錯誤對,且只需增加少量的硬體面積。同時,我們也同時考慮兩個錯誤彼此間相距很遠的錯誤對,並加入插入點到電路中將這些錯誤對分開。實驗結果顯示,只需要少量的觀測點就可以將這些錯誤對分開。

    Two major techniques are proposed to increase diagnosisability of circuits: 1. Diagnostic pattern generation (DPG) generates high quality diagnostic patterns to distinguish transition fault pairs and identifies equivalent fault pairs. 2. Observation point insertion inserts observation points into circuit to distinguish the fault pairs. The first technique mainly consists of two methods: 1. Fault Inactivation Method (FIM) generates diagnostic patterns to distinguish fault pairs by inactivating one fault and detecting the other. 2. Fault Propagation Method (FPM) generates diagnostic patterns to distinguish fault pairs by initializing both faults at the same time and creating different faulty responses of two faults on outputs. Experimental results show that the diagnosis resolutions in ISCAS89 (ITC99) benchmarks can reach 99.999999% (99.999995%). But few fault pairs cannot be distinguished or identified as equivalent fault pairs. We use the second technique to insert observation points to distinguish these fault pairs. Experimental results show that only 2 (109) observation points are needed for ISCAS89 (ITC99) benchmarks, and hence the diagnosis resolutions for all circuits are 100% with area overhead less than 1%. In addition, for the indistinguished fault pairs with large distance between two faults in a pair, we also adopt our second technique. Experimental results show that most of fault pairs can be distinguished by inserting few observation points.

    Chapter 1 Introduction 1 Chapter 2 Background & Previous Work 5 2.1 Background 5 2.1.1 Diagnostic Test Generation for Stuck-at Faults 5 2.1.2 Transition Fault Pattern Generation by Using Stuck-at Fault ATPG 7 2.2 Previous Works 8 Chapter 3 Overview of Diagnosis Flow 11 3.1 Diagnosis Flow with Diagnostic Pattern Generation 12 3.2 Diagnosis Flow with DPG and Observation Point Insertion 13 Chapter 4 Proposed Diagnostic Pattern Generation (DPG) 15 4.1 Fault Inactivation Method 16 4.2 Fault Pair Filter 18 4.3 Fault-Propagation Method 19 4.4 Multiple Fault Pairs Insertion 22 4.5 Static Pattern Compaction 24 4.6 Sub-Circuit Analysis 27 Chapter 5 Observation Point Insertion Method 30 5.1 Insertion of Observation Point 30 5.2 Algorithm of Observation Point Selection 31 Chapter 6 Experimental Results 37 6.1 Experimental Results of Proposed DPG 37 6.2 Comparison with Related Work 40 6.3 Experimental Results of Observation Point Insertion 42 6.3.1 Experimental Results of OBS for Aborted Fault Pairs 43 6.3.2 Experimental Results of OBS for Fault Pairs with Large DISTAN 45 Chapter 7 Conclusions 49 References 50

    [1]Y. Higami, Y. Kurose, S. Ohno, H. Yamaoka, H. Takahashi, Y. Takamatsu, Y. Shimizu, and T. Aikyo, "Diagnostic Test Generation for Transition Faults Using a Stuck-at ATPG Tool," in Proc. Int’l. Test Conf., 2009, Paper 16.3.
    [2]V. D. Agrawal, D. H. Baik, Y. C. Kim, and K. K. Saluja, "Exclusive Test and its Applications to Fault Diagnosis," in Proc. Int’l Conf. on VLSI Design, 2003, pp. 143-148.
    [3]A. Veneris, R. Chang, M. S. Abadir, and M. Amiri, "Fault Equivalence and Diagnostic Test Generation Using ATPG," in Proc. Int’l Symp. Circuits and Systems, 2004, pp. 221-224.
    [4]J. Ye, X. Zhang, Y. Hu, and X. Li, "Substantial Fault Pairs at-A-Time (SFPAT): An Automatic Diagnostic Pattern Generation Method," in Proc. Asia Test Symp., 2010, pp. 192-197.
    [5]Y. Zhang and V. D. Agrawal, "A Diagnostic Test Generation System," in Proc. Int’l Test Conf., 2010. Paper 12.3
    [6]P. Camurati, "A Diagnostic Test Pattern Generation Algorithm," in Proc. Int’l Test Conference, 1990, pp.52 -58.
    [7]T. Gruning, U. Mahlstedt, and H. Koopmeiners, "DIATEST: A Fast Diagnostic Test Pattern Generator for Combinational Circuits," in Proc. Int’l Conf. Computer-Aided Design, 1991, pp. 194-197.
    [8]I. Pomeranz and S. M. Reddy, "Diagnostic Test Generation Based on Subsets of Faults," in Proc. European Test Symposium, 2007, pp. 151-158, 2007.
    [9]I. Pomeranz and S. M. Reddy "Gradual Diagnostic Test Generation Based on the structural distance between indistinguished fault pairs", in Proc. Int’l. Symp. on Defect and Fault Toler. in VLSI Syst., 2010, pp.349-357.
    [10]N. K. Bhatti and R. D. Blanton, "Diagnostic Test Generation for Arbitrary Faults," in Proc. International Test Conf., 2006. Paper 19.2
    [11]I. Pomeranz, S. M. Reddy and S. Venkataraman, "Z-Diagnosis: A Framework for Diagnostic Fault Simulation and Test Generation Utilizing Subsets of Outputs," IEEE Trans. on Computer-Aided Design, 2007, pp. 1700-1712.
    [12]I. Pomeranz and S. M. Reddy, "A-Diagnosis: A Complement to Z-Diagnosis," in Proc. Int’l. Symp. on Defect and Fault Toler. in VLSI Syst., 2007, pp. 235-242.
    [13]Z. Wang, M. Marek-Sadowska, K. H. Tsai, and J. Rajski, "Multiple fault diagnosis using n-detection tests", in Proc. Int’l Conf. Computer Design, 2003, pp.198 -201.
    [14]W.-T. Cheng, B. Benware, R. Guo, K.-H. Tsai et al., "Enhancing Transition Fault Model for Delay Defect Diagnosis", in Proc. Asia Test Symp., 2008, pp.179-184.
    [15]V. Mehta, Z. Wang, M. Marek-Sadowska, K.-H. Tsai, J. Rajski, "Delay Fault Diagnosis for Non-Robust Test", in Proc. Int’l. Symp. on Quality Electronic Design, 2006, pp. 463-472.
    [16]A. Krstic, L.-C. Wang, K.-T, Cheng, J.-J. Liou, T. M. Mak, "Enhancing Diagnosis Resolution for Delay Defects Based Upon Statistical Timing and Statistical Fault Models," in Proc. Design Automation Conference, 2003, pp. 668-673.
    [17]N. Tendolkar, D. Belete, B. Schwarz, B. Podnar, A. Gupta, S. Karako, W.-T. Cheng, A. Babin, K.-H. Tsai, N. Tamarapalli, and G. Aldrich, "Improving Transition Fault Test Pattern Quality through At-Speed Diagnosis," in Proc. Int’l Test Conf., 2006, paper 11.2.
    [18]Y.-Y. Chen and J.-J. Liou, "Diagnosis Framework for Locating Failed Segments of Path Delay Faults", IEEE Trans. on VLSI, 2008, pp. 755-765.
    [19]P.-J. Chen, W.-L. Hsu, J.C.-M Li, N.-H. Tseng, K.-Y. Chen, W.-P. Changchien, C.C.C. Liu, "An Accurate Timing-aware Diagnosis Algorithm for Multiple Small Delay Defects", in Proc. Asia Test Symp., 2011, pp. 291-296.
    [20]R. Guo, W.-T. Cheng, T. Kobayashi, and K.-H. Tsai, "Diagnostic Test Generation for Small Delay Defect Diagnosis," in Proc. VLSI Design Automation and Test Symp., 2010, pp.224-227.
    [21]Y. Sato, S. Hamada, and T. Maeda, “Invisible delay quality–SDQL model lights up what could not be seen,” in Proc. IEEE Int. Test Conf., in Proc. Int’l. Test Conf., 2005, 47.1-47.9.
    [22]X. Lin, K. Tsai, C.Wang, M. Kassab, J. Rajski, T. Kobayashi, R. Klingenberg, Y. Sato, S. Hamada, and T. Aikyo, “Timing-aware ATPG for high quality at-speed testing of small delay defects,” in Proc. Asian Test Symp., 2006, pp. 139–146.
    [23]S. Kajihara, S. Morishima, A. Takuma, X.Wen, T. Maeda, S. Hamada, and Y. Sato, "A Framework of High-Quality Transition Fault ATPG for Scan Circuits", in Proc. Int’l. Test Conf., 2006, Paper 2.1.
    [24]R. Turakhia, W. R. Daasch, M. Ward, and J. van Slyke, "Silicon Evaluation of Longest Path Avoidance Testing for Small Delay Defects," in Proc. Int'l Test Conf., 2007, pp.1-10.
    [25]I. Pomeranz, "Gradual Diagnostic Test Generation and Observation Point Insertion Based on the Structural Distance Between Indistinguished Fault Pairs," IEEE Trans. on VLSI Systems, 2012, pp.1026-1035.
    [26]I. Pomeranz, S. Venkataraman, and S. M. Reddy, "Z-DFD: Design-for-diagnosability based on the Concept of Z-detection," in Proc. Int’l. Test Conf., 2004, pp.489-497.
    [27]N. Rahagude, M. Chandrasekar and M. S. Hsiao, "DFT + DFD: An Integrated Method for Design for Testability and Diagnosability," in Proc. Asian Test Symp., 2010, pp.218- 223.
    [28]I. Pomeranz and S. M. Reddy, “Static Test Compaction for Diagnostic Test Sets of Full-Scan Circuits,” in Proc. IET Computers & Digital Techniques, 2010, pp. 365-373.
    [29]M. A. Shukoor and V. D. Agrawal, "A Two Phase Approach for Minimal Diagnostic Test Set Generation," in Proc. European Test Symp., 2009, pp. 115-120.
    [30]Y. Higami, K. K. Saluja, H. Takahashi, S. Kobayashi and Y. Takamatsu, "Compaction of Pass/fail-based Diagnostic Test Vectors for Combinational and Sequential Circuits, " in Proc. Asia and S. Pacific Design Autom. Conf., 2006, pp. 659-664.
    [31]Y. Zhang and V. D. Agrawal, "Reduced Complexity Test Generation Algorithms for Transition Fault Diagnosis," in Proc. Int’l Conf. Computer Design, 2011, pp. 96-101.
    [32]F. Zheng, K.-T. Cheng, X. Yan, J. Moondanos, and Z. Hanna, "An Efficient Diagnostic Test Pattern Generation Framework Using Boolean Satisfiability," Asian Test Symp., 2007, pp. 288-294.
    [33]N. K. Bhatti and R. D. Blanton, "Diagnostic Test Generation for Arbitrary Faults," in Proc. Int’l Test Conf., 2006, pp. 1-9.
    [34]M. Nakao, S. Kobayashi, K. Hatayama, K. Iijima and S. Terada, "Low Overhead Test Point Insertion For Scan-based BIST," in Proc. Int’l Test Conf., 1999, pp. 348-357.
    [35]B. Seiss, P. Trouborst, and M. Schalz, "Test Point Insertion for Scan-based BIST," in Proc. European Test Conf., 1911, pp. 253-262.
    [36]N. Touba and E. McCluskey, "Test Point Insertion Based on Path Tracing," in Proc. VLSI Test Symp., 1996, pp. 2-8.

    無法下載圖示 校內:2019-08-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE