簡易檢索 / 詳目顯示

研究生: 鄭博銘
Jeng, Bo-Ming
論文名稱: 微型天線與寬頻天線於生醫與家庭照護之應用設計
The Design of Micro-antenna and Broadband Antenna on Biomedical and Homecare Application
指導教授: 羅錦興
Luo, Ching-Hsing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 79
中文關鍵詞: 隱形眼鏡家庭照護開迴路天線寬頻天線帶拒
外文關鍵詞: Contact Lens, Homecare, Open-Loop Antenna, Broadband Antenna, Band-notch
相關次數: 點閱:95下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來居家照護結合無線生醫遙測系統開始被討論以及重視,其目的是為慢性病患者提供居家醫療以及就近照護。其中以隱形眼鏡結合無線生醫遙測技術屬於近來被熱門討論的議題,優點為能提供眼疾慢性病患者進行長時間監測和控制,缺點在於先前文獻內隱形眼鏡上內嵌天線採用迴圈天線(Loop Antenna), 傳統迴圈天線共振波長為全波長,並會在表面會產生電流零點,且只能涵蓋單一個頻率,不僅會因頻寬窄而且容易受眼球環境影響。若系統需要雙頻或多頻操作就必須使用相對數量的天線。因為隱形眼鏡空間有限,導致天線設計困難以及可用頻率有限,更加限制了系統的發展。

    本文主要提出創新微型開迴路寬頻天線,使其可以在隱形眼鏡狹小的空間內滿足多頻操作,同時為結合居家照護與無線生醫遙測,以一個手持式裝置(如:平板電腦等)接收隱形眼鏡傳出的生理訊號,再設計兩支天線安裝於手持式裝置上。其中一隻是數位電視天線,可以接收無線電視訊號,使手持式裝置成為娛樂平台;另一隻是超寬頻天線,以傳送大量生理訊號或照護資訊給家人、照護中心或醫療中心。如此,從隱形眼鏡的微型開迴路寬頻天線、數位電視天線以及超寬頻天線的設計,增強生醫與家庭照護系統的建立。

    為改善前述傳統迴圈天線的缺點,本文提出創新的微型開迴路寬頻天線(Open-loop Antenna)的半徑尺寸為5 mm而厚度僅有11 um,以微機電技術(MEMS)使用金(Au)製作在PDMS介質上並內嵌在隱形眼鏡中。設計重點是選擇在傳統迴圈天線電流零點的位置開路,共振波長會因此縮短為四分之一波長,不僅會讓第一共振模態會往低頻移動,也和第二及第三共振模態結合形成寬頻。為了進一步驗證眼球環境對於微型開迴路寬頻天線的影響,使用豬眼替代人眼來完成模擬與實際量測。傳統超寬頻天線涵蓋範圍大,容易干擾周圍相同頻率的系統,為了改善這個缺點並防止干擾無線眼球生理參數量測系統使用的頻段,所以需要設計具有帶拒濾波效果的超寬頻天線設計,因此也設計具有濾波效果的超寬頻天線,天線設計則是利用四分之一波長的金屬片與天線短路,使得金屬片與天線產生反向電流互相抑制,再搭配天線接地面上的槽孔可得到雙頻帶拒濾波的效果,進而提升抗干擾能力。一般市售數位電視天線由於使用頻率低,造成尺寸偏大的缺點,而為了將數位電視天線內嵌在手持式裝置中,則是延續先前提出的開迴路技術並外加可折疊的單極天線來設計,使其可完全內嵌在160 mm 70 mm的手持式裝置中。

    提出創新微型開迴路寬頻天線設計,不僅可同時涵蓋1.7 GHz-9.7 GHz (140%, return loss 10 dB)的頻寬,而且不用增加天線尺寸即可獲得更低的共振頻率,天線增益值也提升至-15 dBi,並且天線的輻射場型具有指向性,可以減少眼球所吸收的輻射量。本文提出以豬眼替代人眼進行量測,針對豬眼組織與文獻中人眼的介電系數做比較,實際量測結果證明豬眼球的介電參數與人眼相近,在實際使用環境實驗結果顯示,微型開迴路寬頻天線可同時在頻率涵蓋範圍內有良好的輻射特性,並且有效克服環境因素產生的頻率飄移。而手持式裝置中負責傳遞資料的超寬頻天線,經過設計最大可涵蓋2.5-16.8 GHz (220%, VSWR ≦ 2) 可防止干擾到無線雙頻眼球生理參數量測系統使用的2.4 GHz與5.8 GHz頻率(VSWR ≧ 6),並具有全向性的輻射場型。採用內嵌方式設計的數位電視天線,不僅可內含在手持式裝置中節省體積,而且可涵蓋470-860 MHz 數位電視的操作頻率,量測結果增益值約為2.8 dBi,天線輻射效率高達87%。

    本文提出一種創新的微型開迴路寬頻天線設計,內嵌在隱形眼鏡上同時使用多個頻率操作,可用來做無線傳能、生理資料傳送等多種功能共同使用。而當隱形眼鏡上的微型開迴路寬頻天線生理訊號資料傳送至手持式裝置做分析處理時;使用者可透過手持式裝置上的超寬頻天線來傳送分析處理後的資料至醫院或照護中心,做為健康管理之用。另外也設計可內嵌的數位電視天線,並可和資料分析處理系統結合形成行動多媒體平台兼具生醫照護功能。經過實驗證明所設計的三種天線都有具有良好的輻射特性,並且未來可搭配系統電路真正實現在眼睛生理參數量測系統以及居家照護網路上,也能夠對提升人類醫療生活的便利性做出貢獻。

    Implementing wireless biotelemetry systems in home care has received widespread attention recently. The purpose of this technology is to enable patients with chronic diseases to receive home care or care close to home. In particular, numerous recent studies have examined integrating contact lenses and wireless biotelemetry systems. This application offers long-term monitoring and control advantages for patients with chronic eye disease. However, previous studies have indicated that a narrow bandwidth is a disadvantage; the device is easily affected by the eye environment because antennas embedded in the contact lenses are loop antennas and the resonant wavelengths of traditional loop antennas are full wavelengths. Therefore, zero current points might occur on the surface of the lenses and the device covers only one frequency. Consequently, the number of antennas necessary for the system equals the number of frequencies in dual or multi-frequency operations. However, because contact lenses have limited space, antenna design is difficult and the number of usable frequencies is constrained, thereby restricting system development.

    The primary purpose of this study was to propose an innovative broadband open-loop micro-antenna that allows multi-band operations within contact lenses, and to integrate homecare environments and wireless biomedical telemetry systems. A handheld device (i.e., digital tablet) was adopted to receive physiological signals transmitted by contact lenses. One antenna was a Digital Video Broadcasting – Terrestrial (DVB-T) antenna that received wireless TV signals, thereby allowing the handheld device to function as an entertainment platform. The other antenna was an ultra-wideband (UWB) antenna that could transmit a substantial amount of physiological signals or other health care information to family members, care centers, or medical centers. Broadband open-loop micro-antenna embedded in contact lenses combined with DBV-T antenna and UWB antenna could facilitate the development of biomedical and home care systems.

    To address the discussed deficiency of traditional loop antenna, this study proposed an 11-μm-thick innovative broadband open-loop antenna with a 5-mm radius. The proposed antenna was produced using microelectromechanical systems (MEMS) and gold (Au) on polydimethysiloxane (PDMS) medium, and was subsequently embedded into contact lenses. The key of the proposed design was breaking the circuit at the zero current point of a traditional loop antenna, thereby reducing the resonant wavelength to only a quarter. This not only moved the first resonant mode toward lower frequencies, but it also formed a broadband by combining with the second and third resonant modes. To further investigate the influences of ocular environments on the broadband open-loop micro-antenna, pig eyes were adopted as an alternative for human eyes for simulation and practical measurement. A traditional UWB antenna has a large coverage frequency band, which is likely to interfere with any proximal systems operating at an identical frequency. To address this deficiency and to avoid interfering with the frequency bands required by the wireless ocular physiological monitoring system, the UWB antenna must be equipped with band notch characteristic. In this study, the design of UWB antennas with band notch characteristic adopted quarter-wave metal plates and short-circuited antennas to induce mutually cancelling reverse currents between the two materials. In addition, the anti-interference ability of the system can be further increased if the antennas are attached to ground slots to act as a dual-band notch characteristic. Commercial DVB-T antennas on the market are over-sized for operating at low frequencies. Therefore, this study embedded DVB-T antennas into handheld devices. Combining the proposed open-loop technique with a foldable monopole antenna, the new antenna can be fully integrated into a handheld device that is 160 mm 70 mm.

    The proposed innovative broadband open-loop micro-antenna covers the 1.7–9.7 GHz frequency band (140%, return loss 10 dB), and possesses lower resonant frequencies without having to increase the size of the antenna size. Moreover, the antenna gain can be increased to -15 dBi. The radiation pattern of this antenna shows directivity, which could reduce the amount of radiation absorbed by human eyes. In this study, pig eyes substituted for human eyes for measurement. The permittivity of the pig eye tissues was compared to that of human eyes reported by the literature. The measurement results indicated that pig eyes had a permittivity similar to that of human eyes. Additionally, the experiment results in a real-world environment showed that the broadband open-loop micro-antenna displayed satisfactory radiation characteristics within the coverage frequency range, and effectively reduced frequency drift that was caused by specific environmental factors. The proposed UWB antenna within the handheld device, which was responsible for data transmissions, covered a maximum frequency band of 2.5–16.8 GHz (220%, VSWR ≦ 2). This frequency band exhibited omnidirectional radiation patterns that did not interfere with the 2.4 and 5.8 GHz frequency bands (VSWR ≧ 6) used by the wireless dual-band ocular physiological monitoring system. The proposed embedded DVB-T antenna not only accommodates the limited size of handheld devices, but it also covers the operating frequency of digital TV (470–860 MHz). The gain measured approximately 2.8 dBi, and the antenna radiation efficiency reached 87%.

    The innovative broadband open-loop micro-antenna proposed in this study can be embedded in contact lenses for operations at multiple frequencies. This antenna simultaneously meets numerous needs, such as wireless powering and physiological data transmissions. After the physiological signals have been transmitted for analysis from the embedded broadband open-loop micro-antenna to the handheld device, users can send the analyzed data via the UWB antenna to hospitals or care centers for health management. Furthermore, the proposed embeddable DVB-T antenna can be integrated with data analysis and management systems, thereby functioning as a mobile multimedia platform enabling biomedical health care. Experiments conducted in this study verified that the proposed three antennas exhibited satisfactory radiation characteristics. These antennas can be integrated with system circuits to implement ocular physiological monitoring systems and home care networks, and contribute to improving the ease of medical care provided in the patient’s home.

    Chapter 1 Introduction 1 1.1 Review of Wireless Ocular Physiological Monitoring for Biomedical and Homecare Applications 1 1.2 Review of Ultra-wideband Antenna 5 1.3 Review of DVB-T Antenna 6 1.4 Motivation and Goals 8 1.5 Organization of the dissertation 10 Chapter 2 Antenna Design 12 2.1 Open-loop antenna design for WOPM application 12 2.2 Ultra-Wideband Antenna design with band-notched characteristic for homecare applications 15 2.2.1 Novel band-notched ultra-wideband elliptical monopole antenna with dual radiating elements 15 2.2.2 Novel elliptical monopole antenna design with band- notched characteristic 17 2.2.3 Design of an ultra-wideband monopole antenna with 3.5 GHz/5 GHz band suppression characteristics 19 2.2.4 Annular monopole ultra-wideband antenna with dual band rejection 21 2.3 DVB-T broadband antenna design for homecare applications 23 2.3.1 Multiple-ring monopole broadband antenna with parasitic elements for DVB-T applications 23 2.3.2 Integrated DTV antenna for portable media player application 26 Chapter 3 Results 27 3.1 Eye tissue 27 3.2 Open-loop antenna 30 3.3 Ultra-wideband antenna with band-notched characteristic 42 3.3.1 Band-notched ultra-wideband elliptical monopole antenna with dual radiating elements 42 3.3.2 Elliptical monopole antenna design with band-notched characteristic 46 3.3.3 Ultra-wideband monopole antenna with 3.5 GHz/5 GHz band suppression characteristics 51 3.3.4 Annular monopole ultra-wideband antenna with dual band rejection 54 3.4 DVB-T broadband antenna 57 3.4.1 Multiple-ring monopole broadband antenna with parasitic elements 57 3.4.2 Integrated DTV antenna for portable media player application 61 Chapter 4 Conclusion 67 References 69

    [1]A. H. Alomari, A. V. Savkin, P. J. Ayre, E. Lim, and N. H. Lovell, “Sensorless estimation of inlet pressure in implantable rotary blood pump for heart failure patients, ” Electron Lett., vol. 46, pp. 481-483, Apr. 2010.
    [2]C. F. Foo, K. J. Tseng, and L. Zhao, “New structure transcutaneous transformer for totally implantable artificial heart system,” Electron Lett., vol. 35, pp. 107-108, Jan. 1999.
    [3]H. Matsuki, M. Shiiki, K. Murakami, T. Yamamoto, S. Nitta, and H. Hashimoto, “High efficient energy transmission for implantable artificial heart, ” IEEE Trans. Journal on Magnetics in Japan, vol. 8, pp. 187-191, Mar. 1993.
    [4]H. Yamada, M. Nirei, H. Ota, K. Kawakatsu, T. Nakajima, Y. Yamamoto, M. Karita, and T. Maruyama, “Development of a linear electromagnetic actuator for implantable artificial heart, ” IEEE Trans. Journal on Magnetics in Japan, vol. 4, pp. 590-595, Sep. 1989.
    [5]B. Zhao, D. Li, L. Zhang, L. Li, J. Zhong, Z. Zhang, Y. Chen, X. Shen, X. Qi, D. Cai, Z. Jiayong, and Z. Zhipeng, “Dynamic recording ECG for ischemic rat heart using implantable wireless telemetry, ” International Conference on Bioinformatics and Biomedical Engineering, May 2011, pp. 1-3.
    [6]D. P. Ramachandran, L. Chuan, T. S. Ma, and J. W. Clark, “Modeling study of the failing heart and its interaction with an implantable rotary blood pump,” Engineering in Medicine and Biology Society, Aug. 2011, pp. 2403-2409.
    [7]A. H. H. Alomari, F. Javed, A V. Savkin, E. Lim, R. F. Salamonsen, D. G. Mason, and N. H. Lovell, “Non-invasive measurements based model predictive control of pulsatile flow in an implantable rotary blood pump for heart failure patients,” 2011 Mediterranean Conference on Control & Automation, Jan. 2011, pp. 491-496.
    [8]H. Chen, W. Jia, Q. Yang, G. Xu, X. Liu, and M. Sun, , “Coupling and compensation analysis of transcutaneous energy transmission for implantable artificial heart,” 2009 IEEE Annual Northeast Bioengineering Conference, Apr. 2009, pp. 1-2.
    [9]H. Bernhard, C. Stieger, and Y. Perriard, “Design of a semi-implantable hearing device for direct acoustic cochlear stimulation,” IEEE Trans Biomedical Engineering, vol. 58, pp. 420-428, Feb. 2011.
    [10]J. Wang, and K. D. Wise, “A Hybrid electrode array with Built-in position sensor for an implantable MEMS-based cochlear prosthesis,” Journal of Microelectromechanical systems, vol. 17, pp. 1187-1194, Oct. 2008.
    [11]D. C. Jeutter, F. Josse, “Design of a radio-linked implantable cochlear prosthesis using surface acoustic wave devices,”IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 40, pp. 469-477, Sep. 1993.
    [12]A. Sudano, D. Accoto, M. T. Francomano, F. Salvinelli, and E. Guglielmelli, “Optimization of kinetic energy harvesters design for fully implantable cochlear implants,”2011 International Conference of Engineering in Medicine and Biology Society, Aug. 2011, pp. 7678-7681.
    [13]M. A. Zurcher, D. J. Young, M. Semaan, C. A. Megerian, and W. H. Ko, “MEMS middle ear acoustic sensor for a fully implantable cochlear prosthesis,”2007 International Conference on Micro Electro Mechanical Systems, Jan. 2007, pp. 11-14.
    [14]D. J. Young, M. A. Zurcher, W. H. Ko, M. Semaan, and C. A. Megerian, “Implantable MEMS Accelerometer Microphone for cochlear prosthesis,” International Symposium on Circuits and Systems, May 2007, pp. 3119-3122.
    [15]A. M. Sodagar, K. D. Wise, and K. Najafi, “Aninterface chip for power and bidirectional data telemetry in an implantable cochlear microsystem,” Biomedical Circuits and Systems Conference, Nov. 2006, pp. 1-4.
    [16]J. Georgiou, and C. Toumatzou, “An analog fully implantable, micropower, log-domain cochlear prosthesis,” International Symposium on Circuits and Systems, May 2001 , pp. 1.2.1-1.2.20.
    [17]I. Lahdesmaki, A. Shum, and B. Parviz, “Possibilities for continuous glucose monitoring by a functional contact lens,” Instrumentation & Measurement Magazine, vol. 13, pp. 14-17, Jun. 2010.
    [18]M. M. Ahmadi, and G. A. Jullien, “A wireless-implantable microsystem for continuous blood glucose monitoring,” IEEE Trans. Biomedical Circuits and Systems, vol. 3, pp. 169-180, Jun. 2009.
    [19]A. R. A. Rahman, G. Justin, A. Guiseppi-Wilson, and A. Guiseppi-Elie, “Fabrication and packaging of a dual sensing electrochemical biotransducer for glucose and lactate useful in intramuscular physiologic status monitoring,” IEEE Sensors Journal, vol. 9, pp. 1856-1863, Dec. 2009.
    [20]F. Ricci, D. Moscone, and G. Palleschi, “Ex vivo continuous glucose monitoring with microdialysis technique: The example of glucoday,” IEEE Sensors Journal, vol. 8, pp. 63-70, Jan. 2008.
    [21]T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a dual-band implantable development of skin mimicking gels for continuous glucose monitoring,” IEEE Trans. Microwave Theory and Techniques, vol. 56, pp. 1001-1008, Apr. 2008.
    [22]G. Sparacino, F. Zanderigo, S. Corazza, A. Maran, A. Facchinetti and C. Cobelli, “Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series,” IEEE Trans. Biomedical Engineering, vol. 54, pp. 931-937, May 2007.
    [23]P. Magni, and R. Bellazzi, “A stochastic model to assess the variability of blood glucose time series in diabetic patients self-monitoring,” IEEE Trans. Biomedical Engineering, vol. 53, pp. 931-937, Jun. 2006.
    [24]C. Pu, Z. Zhu, and Y. H. Lo, “A surface-micromachined optical self-homodyne polarimetric sensor for noninvasive glucose monitoring,” Photonics Technology Lett., vol. 12, pp. 190-192, Feb. 2000.
    [25]M. J. McShane, R. J. Russell, M. V. Pishko, and G. L. Cote, “Glucose monitoring using implanted fluorescent microspheres,” Engineering in Medicine and Biology Magazine, vol. 19, pp. 36-45, Dec. 2000.
    [26]G. D. Chitnis, T. Maleki, B. Samuels, L. B. Cantor, and B. Ziaie, “An ocular tack for minimally invasive continuous wireless monitoring of intraocular pressure,” 2012 IEEE International Conference on Micro Electro Mechanical Systems, pp. 922-925, Jan./Feb. 2012.
    [27]R. M. Haque, and K. D. Wise, “A 3D implantable microsystem for intraocular pressure monitoring using a glass-in-silicon reflow process,” 2011 IEEE International Conference on Micro Electro Mechanical Systems, Jan. 2011, pp. 995-998.
    [28]G. Chen, H. Ghaed, R. Haque, M. Wieckowski, Y. Kim, G. Kim, D. Fick, D. Kim, M. Seok, K. Wise, D. Blaauw, and D. Syivester, “A cubic-millimeter energy-autonomous wireless intraocular pressure monitor,” 2011 Soild-State Circuits Conference, Feb. 2011, pp. 310-312.
    [29]E. Y. Chow, A. L. Chlebowski, and P. P. Irazoqui, “A miniature-implantable rf-wireless active glaucoma intraocular pressure monitor,”IEEE Trans. Biomedical Circuits and Systems, vol. 4, pp. 340-349, Dec. 2010.
    [30]X. Bo, J. H. Li, H. Quan, and Z. Liu, “In vivio monitoring the intraocular pressure of anterior chamber in normal rabbits,” Bioinformatics and Biomedical Engineering, pp. 1-2, Jun. 2009.
    [31]K. C. Katuri, S. Asrani, and M. K. Ramasubramanian, “Intraocular pressure monitoring sensors,” IEEE Sensors Jounal, vol. 8, pp. 12-19, Jan. 2008.
    [32]S. Lizon-Martinez, R. Giannetti, and J. L. Rodrigqez-Marrero, “Design of a system for continuous intraocular pressure monitoring,” IEEE Instrumentation and measurement technology conference, vol. 3, May 2004, pp. 1693-1696.
    [33]M. Leonard, P. Leuenberger, D. Bertrand, A. Bertsch, and P. Renaud, “A soft contact lens with a MEMS strain gage embedded for intraocular pressure monitoring,” Transducer Solid-State Sensors, Actuators and Microsystems, vol. 2, Jun. 2003, pp. 1043-1046.
    [34]F. Bertoncini, R. Giannetti, and B. Tellini, “A magnetic sensors feasibility investigation for continuous intraocular pressure monitoring,” Sensors for Industry Conference, Nov. 2002, pp. 143-146.
    [35]P. Soontornpipit,“Design of implantable antenna for communication with medical implants,” M.S. thesis, Dept. Elect. Comput. Eng., Utah State Univ, Logan, UT, 2002.
    [36]W. C. Liu, F. M. Yeh, and M. Gavami, “Miniaturized implantable broadband antenna for biotelemetry communication,” Microwave Opt Tech Lett., vol. 50, pp. 2407-2409, Sep. 2008.
    [37]W. C. Liu, S. H. Chen, and C. M. Wu, “Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices,” Microwave Opt Tech Lett., vol. 51, pp. 755-757, Mar. 2009.
    [38]M. Leonardi, E. M. Pitchon, A. Bertsch, P. Renaud, and A. MermoudLiu, “Wireless contact lens sensor for intraocular pressure monitoring : assessment on enucleated pig eyes, ” Acta Ophthalmologica., vol. 87, pp. 433-437, Jun. 2009.
    [39]K. Stangel, S. Kolnsberg, D. Hammerschmidt, B. J. Hosticka, H. K. Trieu, and W. Mokwa, “A programmable intraocular CMOS pressure sensor system implant, ” IEEE J. Solid-State Circuits, vol. 36, pp. 1094-1100, Jul. 2001.
    [40]Y. T. Liao, H. Yao, B. Parviz, and B. Otis, “A 3μW wirelessly powered CMOS glucose sensor for an active contact lens,” International Solid- State Circuits Conference, Feb. 2011, pp. 38-40.
    [41]R. Badugu, J. R. Lakowicz, and C. D. Geddes,“Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens,” Anal. Chem., Vol. 76, pp.610-618, Feb. 2004.
    [42]W. F. Mar., A. Mueller, and P. Herbrechtsmeier, “Clinical trial of a noninvasive contact lens glucose sensor,” Diabetes Technol. Ther., Vol. 6, pp. 782-789, Dec. 2004.
    [43]A. Domschke, W. F. Mar., S. Kabilan, and C. Lowe, “Initial clinical testing of a holographic non-invasive contact lens glucose sensor,” Diabetes Technol. Ther., Vol. 8, pp. 89-93, Feb. 2006.
    [44]H. Yao, A. Shum, M. Cowan, I. Lahdesmaki, and B. A. Parviz, “A contact lens with embedded sensor for monitoring tear glucose level, ” Biosens. Bioelectron., Vol. 26, pp. 3290-3296, Mar. 2011.
    [45]M. Chu, K. Miyajima, D. Takahashi, T. Arakawa, K. Sano, S. Sawada, H. Kudo, Y. Iwasski, K. Akiyoshi, M. Mochizuki, and K. Mitsubayashi, “Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment, ”Talanta., vol. 83, pp. 960-965, Jan. 2011.
    [46]J. Pandey, Y. T. Liao, A. Lingley, R. Mirjalili, B. Parviz, and B. Otis, “A fully integrated rf-powered contact lens with a single element display, ” IEEE Trans. Biomed. Circuits Syst., vol. 4, pp. 454-461, Dec. 2010.
    [47]European Telecommunication Standards Institute [Online] http://www.esti.org.
    [48]“Medical Implant Communications Service (MICS) federal register,” Rules and Regulations, vol. 20, pp. 750-755, Mar. 1999.
    [49]A. Alipour, and H. R. Hassani, “A novel omni-directional UWB monopole antenna, ” IEEE Trans Antennas Propag., vol. 56, pp. 3854-3857, Dec. 2008.
    [50]H. K. Kan, W. S. T. Rowe, and A. M. Abbosh, “Compact coplanar waveguide-fed ultra-wideband antenna, ” Electron Lett., vol. 43, pp. 654-656, Jun. 2007.
    [51]K. P. Ray, G. Kumar, and P. V. Anob, “Wide band planar modified triangular monopole antennas, ”Microwave Opt Tech Lett., vol. 49, pp. 628–632, Mar. 2007.
    [52]A. Alipour, and H. R. Hassani, “A novel omni-directional UWB monopole antenna, ”IEEE Trans Antennas Propag., vol. 56, pp. 3854-3857, Dec. 2008.
    [53]W. K. Toh, X. Qing, and Z. N. Cheng, “A planar UWB patch-dipole antenna, ” IEEE Trans Antennas Propag., vol. 59, pp. 3441-3444, Sep. 2011.
    [54]O. M. H. Ahmed, A. R. Sebak, and T. A. Denidni, “Compact UWB printed monopole loaded with dielectric resonator antenna,” Electron Lett., vol. 47, pp. 7-8, Jan. 2011.
    [55]S. Lvxia, G. Huiping, L. Xueguan, and W. Ying, “Ultra-wideband planar monopole antenna with parametric study,” IET Antennas Propagation. Microw., vol. 6, pp. 172-177, Jan. 2012.
    [56]M. Naser-Moghadasi, A. Dadgarpour, F. Jolani, and B. S. Virdee, “Ultra wideband patch antenna with a novel folded-patch technique,” IET Antennas Propagation. Microw., vol. 3, pp. 164-170, Feb. 2009.
    [57]N. Mohammadian, M. N. Azarmanesh, and S. Soltani, “Compact ultra-wideband slot antenna fed by coplanar waveguide and microstrip line triple-band-notched frequency function, ” IET Antennas Propagation. Microw., vol. 4, pp. 1811-1817, Nov. 2010.
    [58]J. Y. Deng, Y. Z. Yin, S. G. Zhou, and Q. Z. Liu, “Compact ultra-wideband antenna with tri-band notched characteristic, ” Electron Lett., vol. 44, pp. 1231-1233, Oct. 2008.
    [59]K. Yin, and J. P. Xu, “Compact ultra-wideband antenna with dual bandstop characteristic,” Electron Lett., vol. 44, pp. 453-454, Mar. 2008.
    [60]L. Luo, Z. Chi, J. P. Xiong, and Y. C. Jiao, “Compact printed ultra-wideband monopole antenna with dual band-notch characteristic,” Electron Lett., vol. 44, pp. 1106-1107, Sep. 2008.
    [61]C. Y. Huang, and W. C. Hsia, “Planar ultra-wideband antenna with a frequency notch characteristic,” Microwave Opt Tech Lett., vol. 49, pp. 316–320, Feb. 2007.
    [62]C. Y. Huang, and W. C. Hsia, “Planar elliptical antenna for ultra-wideband communications,” Electron Lett. vol. 41, pp. 296–297, Mar. 2005.
    [63]R. Movahedinia, M. Ojaroudi, and S. S. Madani, “Small modified monopole antenna for ultra-wideband application with desired frequency band-notch function,” IET Antennas Propagation. Microw., vol. 5, pp. 1380-1385, Aug. 2011.
    [64]Y. S. Li, X. D. Yang, C. Y. Liu, and T. Jiang, “Compact CPW-fed ultra-wideband antenna with band-notched characteristic,” Electron Lett. vol. 46, pp. 1533–1534, Nov. 2010.
    [65]L. H. Ye, and Q. X. Chu, “3.5/5.5 GHz dual band-notch ultra-wideband slot antenna with compact size,” Electron Lett. vol. 46, pp. 325–327, Mar. 2010.
    [66]A. Khalilzadeh, K. K. M. Chan, and K. Rambabu, “Coupled-line-fed dual-notch ultra-wideband antenna,” Electron Lett. vol. 46, pp. 14–16, Jan. 2010.
    [67]Y. Kim, and D. H. Kwon, “CPW-fed right-angled dual tapered notch antenna for ultra-wideband communication,” Electron Lett. vol. 41, pp. 674–675, Jun. 2005.
    [68]J. Y. Zhao, G.. Fu, L. Y. Ji, Q. Y. Lu, and Z. Y. Zhang, “Compact printed ultra-wideband monopole antenna with dual band-notched characteristic,” 2011 International Conference on Electrnoic, Connunications and Control, pp. 780-782, 2011.
    [69]C. Y. Huang, B. M. Jeng, and J. S. Kuo, “Grating monopole antenna for DVB-T application,” IEEE Trans Antennas Propag., vol. 56, pp. 1775-1776, Jun. 2008.
    [70]C. M. Su, L. C. Chou, C. I. Lin, and K. L. Wong, “Internal DTV receiving antenna for laptop application,” Microwave Opt Tech Lett., vol. 44, pp. 4-6, Jan. 2005.
    [71]W. Y. Li, K. L. Wong, and S. W. Su, “Broadband integrated DTV antenna for USB dongle application,” Microwave Opt Tech Lett., vol. 49, pp. 1018-1021, May 2007.
    [72]C. Y. Huang, B. M. Jeng, and C. F. Yang, “Wideband monopole antenna for DVB-T application,” Electron Lett., vol. 44, pp. 1448-1450, Dec. 2008.
    [73]X. Liang, R. Jin, Y. Zhao, and J. Geng, “Compact DVB-T printed monopole antenna, ” 2010 International Workshop on Antenna Technol., pp. 1-4, Mar. 2010.
    [74]C. Y. Huang, and W. C. Hsia, “Planar elliptical antenna for ultra-wideband communications,” Electron Lett., vol. 37, pp. 934-936, Mar. 2005.
    [75]Z. N. Cheng and Y. W. M. Chia, “Broadband monopole antenna with parasitic planar element,” Microwave Opt Technol Lett., vol. 27, pp. 209-210, Nov. 2000.
    [76]Y. Sung, “Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch, ” IEEE Trans Antennas Propag., vol. 60, pp. 1712-1716, Apr. 2012.
    [77]K. Kim, H. Ryu, and J. M. Woo, “Compact wideband folded monopole antenna coupled with parasitic inverted-L element for laptop computer application, ” Electron Lett., vol. 47, pp. 301-303, Mar. 2011.
    [78]J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Printed circular ring monopole antennas, ” Microwave Opt Tech Lett., vol. 45, 372-375, Jun. 2005.
    [79]M. Niroo-Jazi and T. A. Denidni, “A new triple-band circular ring patch antenna with monopole-like radiation pattern using a hybrid technique,” IEEE Trans Antennas Propag., vol. 59, pp. 3512-3517, Oct. 2011.
    [80]S. Ghosh, “Band-notched modified circular ring monopole antenna for ultrawideband application,” IEEE Antennas and Wireless Propag. Lett., vol. 9, pp. 276-279, Mar. 2010.
    [81]C. H. Kuo, K. L. Wong, and F. S. Chang, “Internal GSM/DCS dual-band open-loop antenna for laptop application,” Microwave Opt Tech Lett., vol. 49, pp. 680-684, Mar. 2007.
    [82]Y. W. Chi, K. L. Wong, and S. W. Su, “Broadband printed dipole antenna with a step-shaped feed gap for DTV signal reception, ” IEEE Antennas and Wireless Propag. Lett., vol. 55, pp. 3353-3356, Nov. 2007.
    [83]H. D. Chen, “Compact broadband microstrip-line-fed sleeve monopole antenna for DTV application and ground plane effect,” IEEE Antennas and Wireless Propag. Lett., vol. 7, pp. 497-500, Aug. 2008.
    [84]C. M. Su, L. C. Chou, C. I. Lin, and K. L. Wong, “Embedded DTV antenna for laptop application,” 2005 IEEE Antennas and Propagation Society International Symp., vol. 48, Jul. 2005, pp. 68-71.
    [85]K. L. Wong, and C. H. Huang, “Printed loop antenna with a perpendicular feed for penta-band mobile phone application,” IEEE Transactions on Antenna and Propagation, Vol. 56, No. 7, pp.2138-2141, Jul. 2008.
    [86]Y. J. Chi, and C. W. Chiu, “An internal hepta-band printed loop antenna for laptop computer,” Proc. IEEE AP-S Int. Symp., Jun. 2009.
    [87]Y. W. Chi, and K. L. Wong, “Compact multiband folded loop chip antenna for small-size mobile phone,” IEEE Transactions on Antenna and Propagation, Vol. 56, No. 12, pp. 3797-3803, Dec. 2008.
    [88]C. M. Lee, T. C. Yo, F. J. Huang, and C. H. Luo,“Dual-resonant π-shape with double L-strips PIFA for implantable biotelemetry,” Electron Lett., vol. 44, pp. 837-838, Jul. 2008.
    [89]C. M. Lee, T. C. Yo, F. J. Huang, and C. H. Luo, “Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry,” Microwave Opt Tech Lett., vol. 51, pp. 749-752, Mar. 2009.
    [90]F. J. Huang, C. M. Lee, C. L. Chang, L. K. Chen, T. C. Yo, and C. H. Luo, “Rectenna application of miniaturized implantable antenna design for tri-band biotelemetry communication, ” IEEE Trans. Ant. And Propag.,, vol. 59, pp. 2646-2653, Jul. 2011
    [91]Ansoft Corporation HFSS [Online]. http://www.ansoft.com/products/hf/hfss/.
    [92]N. Carrara. Institute of Applied Physics(IFAC)[online].http://niremf.ifac.cnr.it/-
    tissprop/htmlclie/htmlclie.htm.
    [93]IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300 GHz, IEEE Standard C95.1-1999,1999.
    [94]Tong, Y., Zheng, Y., and Xu, Y. P., “A coherent ultra-wideband receiver ic system for WPAN application,” in Proc. IEEE ICU , pp. 60.64, Sep. 2005.

    下載圖示 校內:2018-07-31公開
    校外:2018-07-31公開
    QR CODE