簡易檢索 / 詳目顯示

研究生: 林謙宇
Lin, Chia-Yu
論文名稱: 使用磁控濺鍍氮化鋁緩衝層之氮化鎵光電元件
GaN-Base Opto-Electrical Devices With Sputtering AlN Buffer Layer
指導教授: 賴韋志
Lai, Wei-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 52
中文關鍵詞: 氮化鎵發光二極體
外文關鍵詞: GaN, LED
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討使用磁控濺鍍系統成長氮化鋁(AlN)在圖案化藍寶石基板上光電特性分析探討,期望可以調整出適當的濺鍍功率和適當的厚度來降低缺陷密度的產生,進而提升光輸出功率。
    在實驗方面我們分別改變了功率及厚度,從XRD上計算出FWHM加以探討缺陷密度的問題,再從光電特性上來做分析。在這邊我們發現當厚度從15nm到25nm時這段可以明顯增加薄膜品質,然而在25nm到35nm時薄膜品質並無明顯,而從濺鍍功率瓦數數值來說明顯可以看出在低濺鍍瓦數下薄膜的品質會來的更好,而其最好的參數條件為在330W下厚度為25nm,在XRD(002)和(102)面上半高寬分別為206.7 arcsec和147.8 arcsec,順向導通電壓為2.875V,光輸出功率為14.04mW,而在太陽能光電轉換效率為1.53%為較佳之條件。

    In this research,we investigated how to use magnetron sputtering system to grow AlN on patterned sapphire substrates and discussing it's optical and electrical characteristics.We hope to find out the most ideal sputtering power and the proper film thickness in order to reduce defects and further improve light output power.
    As for our experiments ,we have changed sputtering power and film thickness ,we can obtain FWHM value from my XRD chart ,and investigating the problems that defects would influence,and analyzing further in optical and electrical characteristics .In our experiments ,we varied our film thickness from 15nm to 25nm which can greatly improve our film quality .However, film thickness from 25nm to 35nm doesn't change the film's physical features .As for sputtering power ,the lower power we used the greater film quality we got .The best parameters we obtained was sputtering power 330W and film thickness 25nm.The GaN with the sputtered AlN nucleation layer showed 206.7 and 147.8arcsec of the FWHM of the (002) and (102)
    spectra ,respectively.And forward bias was 2.875V and light output power was 140.04W.Finally,power conversion efficiency 1.53% was the best condition.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 序論.....................................1 1.1 背景......................................1 1.2 研究動機與目的..............................2 參考文獻........................................6 第二章 實驗原理與製程設備量測系.....................8 2.1 實驗原理...................................8 2.1.1氮化鎵發光二極體(Light Emitting Diodes,LEDs)原理.............................................8 2.1.2光萃取效率(Light Extraction Efficiency, LEE)原理.............................................9 2.1.3金屬-半導體歐姆接觸(Metal-Semiconductor Ohmic Contact)......................................11 2.2太陽能電池的相關參數...........................12 2.2.1開路電壓(Open-circuit Voltage,Voc)........13 2.2.2短路電流(Short Current,ISC)...............13 2.2.3 最大輸出功率(Maximum Output Power, PMAX)、最大輸出電 壓(VMAX)、最大輸出電流(IMAX)....................14 2.2.4填充因子(Fill Factor, FF).................14 2.2.5 光電轉換效率(Energy Conversion Efficiency,η)................................15 2.3 製程設備.................................15 2.3.1有機金屬氣相磊晶(Metal Organic Vapor Phas Epitaxy, MOVPE).......................................15 2.3.2 磁控濺鍍系統(sputtering)................16 2.3.3 電子束蒸鍍(Electric Beam Evaporator)....17 2.3.4 感應耦合式電漿蝕刻(Inductiv Coupled Plasma,ICP).................................18 2.4量測系統..................................18 2.4.1 發光二極體輸出功率(Output Power)量測系統..18 2.4.2電流-電壓量測系統........................19 參考文獻....................................26 第三章實驗研究製程步驟.........................28 3.1磁控濺鍍.................................28 3.2 MOVPE成長..............................28 3.3氮化鎵發光二極體元件製程....................28 3.3.1燒杯與試片清潔..........................28 3.3.2 定義圖形..............................29 3.3.3濕式蝕刻與高台蝕刻.......................31 3.3.4 熱處理製程............................32 3.3.5蒸鍍p-n 金屬電極製程....................32 參考文獻...................................37 第四章實驗結果與討論.........................38 4.1磊晶品質分析............................38 4.2 電特性分析.............................39 4.2.1順向電壓-電流特性......................39 4.2.2 反向電壓電流特性......................40 4.3 光特性分析.............................40 4.3.1 電流與發光波長特性.....................40 4.3.2電流與輸出功率特性......................41 4.4太陽能分析..............................42 第五章 結論與未來展望........................51 5. 1 結論.................................51 5.2 未來展望...............................52

    第一章 序論

    [1] S.Nakamura, T. Mukai, and M. Senoh, “Candela-class high-
    brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett., vol. 64, no. 13, pp. 1687-1689, (1994).
    [2] S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer. (1997).
    [3] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well structure light-emitting diodes”, Jpn. J. Appl. Phys., vol. 34, no.10B, pp. L1332-L1335, (1995).
    [4] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University Press, (2006).
    [5] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K .Chocho, “Continuous-wave operation of InGaN/GaN/ AlGaN-based laser diodes grown on GaN substrates”, Appl. Phys. Lett., vol. 72, no. 16, pp. 2014-2016, (1998).
    [6] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys., vol. 79, no. 10, pp. 7433-7473, (1996).
    [7] A. Krost and A. Dadgar, “GaN-based devices on Si”, phys. stat. sol. (a), vol. 194, no. 2, pp. 361-375, (2002)
    [8] X. A. Cao, S. F. LeBoeuf, M. P. D’Evelyn, S. D. Arthur, J. Kretchmer, C. H. Yan, and Z. H. Yang,” Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates”, Appl. Phys. Lett., vol. 84, no. 21, pp. 4313-4315, (2004) .
    [9] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, “Reduction of etch pit density in organometallic vapor
    phase epitaxy-grown GaN on sapphire by insertion of a low-
    temperature-deposited buffer layer between high-temperature-grown GaN”, Jpn. J. Appl. Phys., vol. 37, no. 3B, pp. L316-L318, (1998) .
    [10]X. G. Zhang, B. Soderman, E. Armour, and A. Paranjpe “Investigation of MOCVD growth parameters on the quality of GaN epitaxial layers”, J. Cryst.Growth, vol. 318, no.1, pp. 436-440, (2011).
    [11]H. Amano, N. Sawaki, I. Akasaki, and Y. Togoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer ”, Appl. Phys.Lett., vol. 48, no.5, pp. 353-356, (1986)
    [12]S. Nakamura, “GaN growth using GaN buffer layer”, Jpn. J. Appl. Phys., vol. 30, no. 10A, pp. L1705-L1707,(1991).
    [13] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN‐based light‐emitting diodes ”Appl. Phys. Lett., vol. 66, no. 10, pp. 1249-1251, (1995).

    第二章實驗原理與製程設備量測系統

    [1] 楊亞諭, “光致電化學氧化與壓印技術於氮化物發光二極體之研究”, 國立成功大學光電科學與工程研究所, (2009).
    [2] Donald A. Neamen 原著, 楊賜麟譯, “半導體物理與元件”, 美商麥格爾.希爾國際股份有限公司, 台灣分公司, (2005).
    [3]陳盈宏,“用空隙陣列結合圖案化基板改善氮化鎵發光二極體之特性”,國立成功大學光電科學與工程研究所, (2010).
    [4]李佳輝,“氮化鎵摻雜錳應用於中間能帶太陽能電池之研究”, 國立成功大學光電科學與工程研究所, (2011)
    [5]白木靖寬、吉田貞史著,王建義譯,“薄膜工程學”,第三版,全華圖書股份有限公司(2009)
    [6]呂助增,“真空技術與應用”,國家實驗研究院儀器科技研究中心,(2001)
    [7] .彭立琪,“氧化鋅鋁摻雜釔之透明導電薄膜材料特性與其應用在氮化鎵藍光發光二極體之研究”,國立成功大學光電科學與工程研究所,(2007)
    [8] 龔鈺茗,“表面處理對P型氮化鎵特性影響之研究暨非螢光粉式混色發光二極體元件之研製”, 國立台南大學電機工程學系光電工程研究所, (2010). [9] 張詠翕, “以聚焦離子束製程的AlGaN/GaN量子結構之研究”, 國立中山大學物理學系研究所, (2009).
    [10] E. Fred Schubert “Light-Emitting Diodes ” second edition (2006).
    [11]A. Luque and S. Hegedus,“Handbook of Photovoltaic Science and Engineering,”Wiley, England, 2002.

    第三章實驗研究製程步驟

    [1]徐玉輝,“藉由奈米結構改善氮化鎵發光二極體之光電特性,國立成功大學光電科學與工程學系光電產業研發碩士專班,碩士論文 (2012)

    無法下載圖示 校內:2018-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE