簡易檢索 / 詳目顯示

研究生: 柳水金
Liu, Shui-Jin
論文名稱: 電滲微渦流之生成與其在粒子捕捉、釋放及分選之應用
Generation of Electro-osmotic Microvortices and Its Applications in Particle Trapping, Release, and Sorting
指導教授: 黃世宏
Hwang, Shyh-Hong
共同指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 110
中文關鍵詞: 電滲流微渦流粒子操控粒子捕捉陷阱非零散度力滑移速度表面電荷分布
外文關鍵詞: Electro-osmotic Flow, Microvortices, Particle Manipulation, Particle Traps, Nondivergence-free force, Slip velocity, Surface charge distribution
相關次數: 點閱:123下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先針對半無窮區域內,置於非帶電表面上帶電細長片所產生的電滲流現象進行理論性研究。從單一細長片的問題開始,藉由簡單多項式之表面電荷或滑移速度分布來證明數個基本二維解可以組合成類似於理想流場解之閉合型式,由此提供了一個明晰方式來揭露流體流動特徵。這些解析解透露兩種流場拓樸型式:其一為對稱式表面電荷分布所產生之簡單吸入與噴出流,其二為非對稱式表面電荷分布所產生之一對微渦流。對於任意的表面電荷分布,更複雜之流場結構可由這些基本解的疊加來取得。
    此分析被進一步延伸到兩個均勻帶電的細長片上,用來演示流體流動特徵如何隨著細長片的大小和表面介達電位而變化。以漸近方式鑑別出的遠場速度行為,指明了該流場之流力本質是典型遠距的。接著針對電滲微渦流的粒子捕捉應用進行理論分析,經由這些基本流場解的使用顯示,在收斂停滯點附近的對稱渦流可以結合短距吸引力的影響,有效率地捕捉粒子,而非對稱性渦流粒子捕捉效果則相當有限。
    本論文也探討在受侷限微渦流裡粒子之捕捉和釋放,包括在固體表面附近由動電滑移速度驅動產生的微渦流以及在氣液介面由外部動量源所造成的微渦流。一具有通用性之二維解析解被推導出來描述半圓區域內之微渦流,適用於底表面滑移速度分布為多項式的情況。然而在實際應用上,底表面滑移速度分布常為階梯式,難以用多項式來近似。本解析解的一個明顯優點即為經簡單修改後,它亦可處理階梯式或其他型式之表面滑移速度分布。
    最後,本論文考慮粒子受到各種流速場和力場的影響,應用分歧理論於粒子運動方程式來說明不同粒子操作機制的產生條件,包含渦流捕捉陷阱、點捕捉陷阱、極限環捕捉陷阱以及粒子於不同捕捉陷阱的選擇性分離。當懸浮粒子只受到零散度力作用時,發現對於已知滑移速度分布,僅需利用與Stokes阻力、重力和流動渦旋相關的兩個參數即可完成所有粒子捕捉拓樸結構的分類。亦可證明非零散度力,如非均勻排斥或吸引力,可捕捉懸浮粒子至某一陷阱或是將兩種不同性質的懸浮粒子選擇性地分離至不同陷阱中。

    This dissertation theoretically investigates electro-osmotic flow set up by charged strips on an otherwise uncharged surface in a semi-infinite domain. Starting with a single-strip problem, it is demonstrated that for simple polynomial surface charge or slip velocity distributions, several basic two-dimensional solutions can be derived in closed forms constituted by the analogous idea-flow solutions, which provides a more lucid way for revealing the flow features. These analytical solutions reveal two types of the flow topology: simple draining-in/pumping-out streaming and a pair of microvortices for symmetric and anti-symmetric surface charge distributions, respectively. For an arbitrary surface charge distribution, more complicated flow structures can be found by the superposition of these basic solutions.
    The analysis is further extended to two uniformly charged strips, showing how the flow characteristics vary with the strips’ dimensions and surface zeta potentials. The far-field velocity behavior is also asymptotically identified and indicates that the hydrodynamic nature of the flow is typically long-range. An application to particle trapping with electro-osmotic microvortices is then theoretically analyzed. The use of these basic solutions shows that in collaboration with short-range attraction effects, the trapping can be facilitated by symmetric vortices with a converging stagnation point, but not by asymmetric vortices.
    This dissertation also examines particle trapping and release in confined microvortex flows, including those near a solid surface due to variations in the electrokinetic slip velocity and those at a liquid-gas interface due to an external momentum source. A general analytical solution is derived for a two-dimensional microvortex flow within a semicircular cap. This analytical solution is suited to describing a microvortex flow driven by a polynomial slip velocity on the bottom surface. However, stepwise slip velocity distributions are often encountered in practice, which are difficult to approximate by polynomials. One distinct advantage of the analytical solution is that via simple modification, it can still deal with stepwise or other slip velocity distributions.
    Finally, the dissertation uses a bifurcation theory on the kinetic equation of particles under various velocity and force fields to delineate the conditions for a vortex trap, a point trap, a limit cycle trap, and the selective sorting of the particles into different traps. In the presence of only divergence-free forces on suspended particles, it is found that two parameters, such as those related to Stokes drag, gravity, and flow vorticity, are sufficient to classify all the trap topologies for a given slip velocity distribution. It is also shown that nondivergence-free forces like nonuniform repulsion or attraction can capture suspended particles in one trap and selectively sort a binary suspension into different traps.

    目錄 圖目錄 i 第一章、 緒論 1 1.1 前言 1 1.2 基本原理 2 1.2.1 電雙層(electric double layer, EDL)形成機制 2 1.2.2 電滲流(electro-osmotic flow)形成機制 5 1.3 研究動機與文獻回顧 7 1.4 論文架構 14 第二章、 半無窮平面之微渦流生成及結構 17 2.1 單一帶電細長片上之電滲流生成及結構 17 2.1.1 模型描述 17 2.1.2 理想流動類比方法及其應用 20 2.1.3 電滲流流動場及其特性 22 2.1.4 對非均勻外加電場之電滲流的延伸應用 25 2.2 兩個不同帶電細長片之電滲流流動 28 2.2.1 模型描述 28 2.2.2 細長片帶電量、寬度和細長片間距對電滲流動結構的影響 30 2.2.3 幫浦淨流率 33 2.2.4 兩異性電細長片產生之封閉渦流 37 第三章、 有限半圓區域之微渦流生成及結構 41 3.1 半圓平面區域中Stokes流體流動之數學模型及其解 41 3.1.1 微渦流之解析解 42 3.1.2 有限邊界之微渦流解析解 45 3.2 半圓區域下表面有階梯狀滑移速度分布之微渦流解 50 第四章、 利用電滲微渦流結構在半無窮平面區域之粒子捕捉 52 4.1 粒子在微渦流中之運動行為 53 4.2 不同電滲微渦流架構下之粒子捕捉 55 第五章、 利用電滲微渦流結構在半圓區域之粒子操控,包括粒子捕捉、釋放和分選 63 5.1 單一粒子在電滲微渦流流場中之運動 63 5.2 粒子在微渦流中被捕捉和釋放之機制 66 5.2.1 粒子流的線性穩定分析 66 5.2.2 DF場之渦流捕捉陷阱 67 5.2.3 DF場存在情況下,粒子捕捉在底表面之收斂停滯點 68 5.2.4 NDF場存在情況下,粒子捕捉在底表面之收斂停滯點 75 5.2.5 旋轉渦流中之粒子點捕捉陷阱 79 5.2.6 旋轉渦流中粒子在極限環之捕捉和釋放行為 82 5.3 利用渦流中之點捕捉陷阱或極限環捕捉陷阱進行粒子分選 84 5.3.1 利用點捕捉陷阱進行粒子分選 85 5.3.2 利用極限環捕捉陷阱進行粒子分選 87 第六章、 結論和未來研究展望 91 附錄A 理想流動的遠場行為 95 附錄B 單一帶電細長片上電滲微渦流的遠場行為 95 附錄C 細長片上,任意整數次方電荷分布的電滲微渦流解 96 附錄D 微渦流之基本解析解推導 97 附錄E 半圓有限區域微渦流解析解之推導 99 附錄F NDF力場不存在情況下產生之渦流捕捉陷阱 101 附錄G 在微小慣性效應存在下固定點之特徵值 102 參考文獻 104

    [1] Manz, A., Graber, N. and Widmer, H. M., “Miniaturized Total Chemical Analysis System: A Novel Concept for Chemical Sensing,” Sens. Actuator B-Chem., 1, 244 (1990).
    [2] Gravesen, P., Branebjerg, O. J. and Jensen, S., “Microfluidics – A Review,” J. Micromech. Microeng., 3, 168 (1993).
    [3] Shoji, S., “Microfabrication Technologies and Micro-flow Devices for Chemical and Bio-chemical Micro Systems,” Microprocesses Nanotechnol., 99, 72 (1999).
    [4] Harrison, D. J. and Berg, A., Micro Total Analysis Systems 98, Kluwer Academic Publishers, Netherlands (1998).
    [5] Ben, Y. and Chang, H. C., “Nonlinear Smoluchowski Slip Velocity and Micro-vortex Generation,” J. Fluid Mech., 461, 229 (2002).
    [6] Ben, Y., Nonlinear Electrokinetic Phenomena in Microfluidic Devices, Ph.D. Dissertation, University of Notre Dame (2004).
    [7] Probstein, R. F., Physicochemical Hydrodynamics: An Introduction, 2nd ed., John Wiley and Sons, New York (1994).
    [8] Attard, P., Antelmi, D. and Larson, I., “Comparsion of Zata Potential with the Diffuse Layer Potential from Charge Titration,” Langmuir, 16, 1542 (2000).
    [9] Theemsche, A. V., Deconinck, J., Bossche, B. V. and Bortels, L., “Numerical Solution of a Multi-ion One-potential Model for Electroosmotic Flow in Two-dimensional Rectangular Microchannels,” Anal. Chem., 74, 4919 (2002).
    [10] Morgan, H. and Green, N. G., AC Electrokinetics: Colloids and Nanoparticles, Research Studies Press, Hertfordshire (2003).
    [11] Stone, H. A., Stroock, A. D. and Ajdari, A., “Engineering Flows in Small Devices: Microfluidics toward a Lab-on-a-Chip,” Annu. Rev. Fluid Mech., 36, 381 (2004).
    [12] Squires, T. M. and Quake, S. R., “Microfluidics: Fluid Physics at the Nanoliter Scale,” Rev. Mod. Phys., 77, 997 (2005).
    [13] Ghosal, S., “Fluid Mechanics of Electroosmotic Flow and Its Effect on Band Broadening in Capillary Electrophoresis,” Electrophoresis, 25, 214 (2004).
    [14] Brunet, E. and Ajdari, A., “Thin Double Layer Approximation to Describe Streaming Current Fields in Complex Geometries: Analytical Framework and Applications to Microfluidics,” Phys. Rev. E, 73, 056306 (2006).
    [15] Qian, S. and Bau, H. H., “A Chaotic Electroosmotic Stirrer,” Anal. Chem., 74, 3616 (2002).
    [16] Long, D., Stone, H. A. and Ajdari, A., “Electroosmotic Flows Created by Surface Defects in Capillary Electrophoresis,” J. Colloid Interface Sci., 212, 338 (1999).
    [17] Wang, S., Hu, X. and Lee, L. J., “Dynamic Assembly by Electrokinetic Microfluidics,” J. Am. Chem. Soc., 129, 254 (2007).
    [18] Dukhin, S. S. and Miller, R., “On the Theory of Adsorption Kinetics of Ionic Surfactants at Fluid Interfaces 3. Generalization of the Model,” Colloid Polym. Sci., 269, 923 (1991).
    [19] González, A., Ramos, A., Green, N. G., Castellanos, A. and Morgan, H., “Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes. II. A Linear Double-layer Analysis,” Phys. Rev. E, 61, 4019 (2000).
    [20] Lastochkin, D., Zhou, R., Wang, P., Ben, Y. and Chang, H. C., “Electrokinetic Micropump and Micromixer Design Based on AC Faradaic Polarization,” J. Appl. Phys., 96, 1730 (2004).
    [21] Perch-Nielsen, I. R., Green, N. G. and Wolff, A., “Numerical Simulation of Travelling Wave Induced Electrothermal Fluid Flow,” J. Phys. D: Appl. Phys., 37, 2323 (2004).
    [22] Sigurdson, M., Wang, D. Z. and Meinhart, C. D., “Electrothermal Stirring for Heterogeneous Immunoassays,” Lab Chip, 5, 1366 (2005).
    [23] Thamida, S. K. and Chang, H. C., “Nonlinear Electrokinetic Ejection and Entrainment Due to Polarization at Nearly Insulated Wedges,” Phys. Fluids, 14, 4315 (2002).
    [24] Squires, T. M. and Bazant, M. Z., “Induced-charge Electro-osmosis,” J. Fluid Mech., 509, 217 (2004).
    [25] Ramos, A., Morgan, H., Green, N. G. and Castellanos, A., “AC Electric-field-induced Fluid Flow in Microelectrodes,” J. Colloid Interface Sci. 217, 420 (1999).
    [26] Ajdari, A., “Pumping Liquids Using Asymmetric Electrode Arrays,” Phys. Rev. E, 61, R45 (2000).
    [27] Anderson, J. L. and Idol, W. K., “Electroosmosis Through Pores with Nonuniformly Charged Walls,” Chem. Engng Commun., 38, 93 (1985).
    [28] Ajdari, A., “Electroosmosis on Inhomogeneously Charged Surfaces,” Phys. Rev. Lett., 75, 755 (1995).
    [29] Biddiss, E., Erickson, D. and Li, D., “Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows,” Anal. Chem., 76, 3208 (2004).
    [30] Halpern, D. and Wei, H. H., “Electroosmotic Flow in A Microcavity with Nonuniform Surface Charges,” Langmuir, 23, 9505 (2007).
    [31] Qian, S. and Bau, H. H., “Theoretical Investigation of Electro-osmotic Flows and Chaotic Stirring in Rectangular Cavities,” Appl. Math. Model., 29, 726 (2005).
    [32] Erickson, D. and Li, D. Q., “Three-dimensional Structure of Electroosmotic Flow over Heterogeneous Surfaces,” J. Phys. Chem. B, 107, 12212 (2003).
    [33] Ren, L. Q. and Li, D. Q., “Electroosmotic Flow in Heterogeneous Microchannels,” J. Colloid Interface Sci., 243, 255 (2001).
    [34] Hlushkou, D., Kandhai, D., Tallarek, U., “Coupled Lattice-Boltzmann and Finite-difference Simulation of Electroosmosis in Microfluidic Channels,” Int. J. Numer. Meth. Fluids, 46, 507 (2004).
    [35] Ghosal, S. and Lu, Z., “Electroosmotic Flow and Zone Broadening in Microfluidic Channels of Variable Cross-section and Wall Charge,” Technical Proceedings of the 2002 International Conference on Simulation of Microsystems; Nano Science and Technology Institute: San Juan (2002).
    [36] Gleeson, J. P., “Electroosmotic Flows with Random Zeta Potential,” J. Colloid Interface Sci., 249, 217 (2002).
    [37] Holmes, D. and Morgan, H., Particle Focusing and Separation Using Dielectrophoresis in a Microfluidic Device, Kluwer Academic Publishers, Massachusetts (2001).
    [38] Wu, J., Ben, Y., Battigelli, D. and Chang, H. C., “Long-range AC Electroosmotic Trapping and Detection of Bioparticles,” Ind. Eng. Chem. Res., 44, 2815 (2005).
    [39] Wong, P. K., Wang, T. H., Deval, J. H. and Ho, C. M., “Electrokinetics in Micro Devices for Biotechnology Applications,” IEEE/ASME Trans. Mechantronic, 9, 366 (2004).
    [40] Kreft, J., Chen, Y. L. and Chang, H. C., “Conformation and Trapping Rate of DNA at a Convergent Stagnation Point,” Phys. Rev. E, 77, 030801(R) (2008).
    [41] Du, J. R., Juang, Y. J., Wu, J. T. and Wei, H. H., “Long-range and Superfast Trapping of DNA Molecules in an AC Electrokinetic Funnel,” Biomicrofluidics, 2, 044103 (2008).
    [42] Hou, D. and Chang, H. C., “Electrokinetic Particle Aggregation Patterns in Microvortices Due to Particle-field Interaction,” Phys. Fluids, 18, 071702 (2006).
    [43] Yeo, L. Y., Hou, D., Maheshwari, S. and Chang, H. C., “Electrohydrodynamic Surface Microvortices for Mixing and Particle Trapping,” Appl. Phys. Lett., 88, 233512 (2006).
    [44] Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M. and Whitesides, G. M., “FLASH: A Rapid Method for Prototyping Paper-based Microfluidic Devices,” Lab Chip, 8, 2146 (2008).
    [45] Yeo L.Y. and Friend, J. R., “Ultrafast Microfluidics Using Surface Acoustic Waves,” Biomicrofluidics, 3, 012002 (2009).
    [46] Chang, H. C. and Yossifon, G., “Understanding Electrokinetics at the Nanoscale: A Perspective,” Biomicrofluidics, 3, 012001 (2009).
    [47] Hou, D., Maheshwari, S. and Chang, H. C., “Rapid Bioparticle Concentration and Detection by Combining a Discharge Driven Vortex with Surface Enhanced Raman Scattering,” Biomicrofluidics, 1, 014106 (2007).
    [48] Maxey, M. R. and Riley, J. J., “Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow,” Phys. Fluids, 26, 883 (1983).
    [49] Rubin, J., Jones, C. K. R. T. and Maxey, M., “Settling and Asymptotic Motion of Aerosol Particles in a Cellular Flow Field,” J. Nonlinear Sci., 5, 337 (1995).
    [50] Druzhinin, O. A., Ostrovsky, L. A. and Stepanyants, Y. A., “Dynamics of Particles in the Steady Flows of an Inviscid Fluid,” Chaos, 3, 359 (1993).
    [51] Angilella, J. R., “Asymptotic Analysis of Chaotic Particle Sedimentation and Trapping in the Vicinity of a Vertical Upward Streamline,” Phys. Fluids, 19, 073302 (2007).
    [52] Tio, K. K., Ganan-Calvo, A. M. and Lasheras, J. C., “The Dynamics of Small, Heavy, Rigid Spherical Particles in a Periodic Stuart Vortex Flow,” Phys. Fluids A, 5, 1679 (1993).
    [53] Marcu, B., Meiburg, E. and Newton, P. K., “Dynamics of Heavy Particles in a Burgers Vortex,” Phys. Fluids, 7, 400 (1995).
    [54] Vilela, R. D. and Motter, A. E., “Can Aerosols Be Trapped in Open Flows?” Phys. Rev. Lett., 99, 264101 (2007).
    [55] Sapsis, T. and Haller, G., “Clustering Criterion for Inertial Particles in Two-dimensional Time-periodic and Three-dimensional Steady Flows,” Chaos, 20, 017515 (2010).
    [56] Angilella, J. R., “Dust Trapping in Inviscid Vortex Pairs,” arXiv:1003.3842v1 [physics.flu-dyn] (2010).
    [57] Nizkaya, T., Angilella, J. R. and Bues, M., “Note on Dust Trapping in Inviscid Vortex Pairs with Unequal Strengths,” arXiv:1003.4644v2 [physics.flu-dyn] (2010).
    [58] Liu, S. J., Hwang, S. H. and Wei, H. H., “Nonuniform Electro-osmotic Flow on Charged Strips and Its Use in Particle Trapping,” Langmuir, 24, 13776 (2008).
    [59] Wei, H. H., “Shear-modulated Electroosmotic Flow on a Patterned Charged Surface,” J. Colloid Interface Sci., 284, 742 (2005).
    [60] Kim, S. J., Kang, K. H., Lee, J. G., Kang, I. S. and Yoon, B. J., “Control of Particle-deposition Pattern in a Sessile Droplet by Using Radial Electroosmotic Flow,” Anal. Chem., 78, 5192 (2006).
    [61] Milne-Thomson, L. M., Theoretical Hydrodynamics, Macmillan, London (1968).
    [62] Leal, L. G., Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis, Butterworth-Heinemann College, Boston (1992).
    [63] Islam, N., Lian, M. and Wu, J., “Enhancing Microcantilever Capability with Integrated AC Electroosmotic Trapping,” Microfluid. Nanofluid., 3, 369 (2007).
    [64] Gagnon, Z. and Chang, H. C., “Aligning Fast Alternating Current Electroosmotic Flow Fields and Characteristic Frequencies with Dielectrophoretic Traps to Achieve Rapid Bacteria Detection,” Electrophoresis, 26, 3725 (2005).
    [65] Feldman, H. C., Sigurdson, M. and Meinhart, C. D., “AC Electrothermal Enhancement of Heterogeneous Assays in Microfluidics,” Lab Chip, 7, 1553 (2007).
    [66] Hunter, R. J., Foundations of Colloid Science, 2nd ed., Oxford University Press, New York (2000).
    [67] Babiano, A., Cartwright, J. H. E., Piro, O. and Provenzale, A., “Dynamics of A Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems,” Phys. Rev. Lett., 84, 5764 (2000).
    [68] Stommel, H., “Trajectories of Small Bodies Sinking Slowly Through Convection Cells,” J. Marine Res., 8, 24 (1949).
    [69] Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York (1983).
    [70] Anderson, J. L., “Colloid Transport by Interfacial Forces,” Ann. Rev. Fluid Mech., 21, 61 (1989).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE