| 研究生: |
李大輝 Lee, Da-Huei |
|---|---|
| 論文名稱: |
應用於超取樣及Nyquist頻率資料轉換器之動態元件匹配技術 Dynamic Element Matching Approaches for Oversampling-Rate and Nyquist-Rate Data Converters |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 動態元件匹配 、資料轉換器 、低成本 |
| 外文關鍵詞: | dynamic element matching, low-cost, data converters |
| 相關次數: | 點閱:129 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近年來數位訊號處理系統應用迅速成長,資料轉換器已經成為積體電路中非常重要的組成方塊,而為了滿足越來越複雜的系統單晶片(system-on-a-chip)應用,成本較低的高效能資料轉換器需求也就越來越大。在實現低成本高解析度資料轉換器的時候,元件不匹配(element mismatch)是一個相當重要的影響因子。動態元件匹配(dynamic element matching)技術已經被廣泛地用來抑制元件不匹配所造成的諧波失真(harmonic distortion)。本論文將提出且分析數種新的動態元件匹配技術。針對超取樣頻率(oversampling-rate)資料轉換器,提出步進式資料加權平均(advancing data weighted averaging)技術來解決傳統資料加權平均(data weighted averaging, DWA)技術的基頻帶內突波(baseband tone)問題。針對Nyquist頻率資料轉換器,提出隨機多重資料加權平均(random multiple data weighted averaging)技術、隨機增量式資料加權平均(random incrementing data weighted averaging)技術及隨機式溫度計編碼(randomized thermometer-coding)技術來獲得高無諧波失真動態範圍(spurious-free dynamic range)及低最大輸出誤差,並且實現了一個Nyquist頻率的電流汲取式(current-steering)數位類比轉換器來實地驗證本論文所提出之隨機式溫度計編碼技術。
多位元三角積分調變器(delta-sigma modulator)應用於超取樣頻率資料轉換器時,經常採用資料加權平均技術來降低元件不匹配效應,然而卻會遭遇基頻帶內突波的問題。目前已有許多類資料加權平均(DWA-like)技術被發表用來解決基頻帶內突波問題,本論文將這些類資料加權平均技術區分為突波抑制(tone-suppressing)技術及突波遷移(tone-transferring)技術兩種類型,其中突波遷移技術可以得到比突波抑制技術好的訊號對雜訊暨失真比,但是如果輸入訊號有直流成份時可能會讓突波遷移技術無法發揮效用。因此,本論文提出一名為步進式資料加權平均技術的新型高適應性類資料加權平均技術,可擁有突波抑制技術及突波遷移技術兩種類型的特性。若再與輸入訊號直流成份偵測機制結合,步進式資料加權平均技術便成為可重設定(re-configurable)的類資料加權平均技術。
本論文針對Nyquist頻率的資料轉換器,提出了三種動態元件匹配技術及一種數位類比轉換器的創新架構。此架構在使用這三種技術時將同時搭配布局切換技術(layout switching scheme)來使用。本論文所提出之隨機多重資料加權平均技術及隨機增量式資料加權平均技術擁有隨機(randomization)及連續選擇(consecutive selection)兩種特性。其中隨機特性可有效抑制由元件不匹配所產生的諧波失真,進而得到高無諧波失真動態範圍;而連續選擇特性則使得它在與旋轉式走法(rotated walk)切換技術同時使用時,可得到小的靜態輸出誤差。本論文更提出了第三種用於Nyquist頻率數位類比轉換器的技術,名叫隨機式溫度計編碼技術。此技術可同時提供隨機、連續選擇及低元件切換活動(low element switching activity)等三種特性,除了擁有隨機多重資料加權平均技術及隨機增量式資料加權平均技術的優點外,較低元件切換活動還可以得到較低的動態雜訊。
本論文設計且實現了一個低成本高解析度電流汲取式數位類比轉換器,來實地驗證本論文所提出之創新架構。使用隨機式溫度計編碼技術,本論文以1P6M 0.18微米1.8伏特CMOS製程來實現一個14位元電流汲取式數位類比轉換器。量測結果顯示,在取樣頻率達10百萬赫茲的情況下,最佳之無失真訊號動態範圍可達80dB。其中隨機式溫度計編碼技術可以大幅改善被元件不匹配效應影響之無失真訊號動態範圍達16dB。此數位類比轉換器只使用了小於0.28毫米平方的主動面積,比目前14位元規格之其他世界一流轉換器來得小,甚至比其他12位元及10位元之轉換器都要小。
Data converters have become very important building blocks for integrated circuits (ICs) due to the fast growth of digital signal processing systems recently. Lower cost high-performance data converters are strongly demanded to satisfy the requirements of more complicated system-on-a-chip (SOC) systems. Element mismatch is one of the major impairments for low-cost high-resolution data converters. Dynamic element matching (DEM) approaches have been widely used to suppress the harmonic distortions caused by element mismatches. In this dissertation, several DEM approaches are proposed and analyzed. For oversampling-rate data converters, advancing data weighted averaging (ADWA) is proposed to remedy baseband tone problems of conventional DWA. For Nyquist-rate data converters, random multiple DWA (RMDWA), random incrementing DWA (RIDWA) and randomized thermometer-coding (RTC) are proposed to achieve high spurious-free dynamic range (SFDR) and small maximum output error. Furthermore, an ultra low-cost Nyquist-rate current-steering digital-to-analog converter (DAC) is implemented to experimentally verify the proposed RTC.
For oversampling-rate data converters, multibit sigma–delta modulators usually employ the DWA to suppress the element mismatch effect but are plagued by baseband tone problems. The existing DWA-like approaches for solving these problems are categorized in this dissertation as tone-suppressing and tone-transferring approaches. Although tone-transferring approaches can achieve a better signal-to-noise-plus-distortion ratio than tone-suppressing approaches, they may behave unfavorably for input signals with dc components. A flexible DWA-like approach, ADWA, which can achieve both tone-suppressing and tone-transferring functions, is proposed. Moreover, ADWA can be a reconfigurable approach that uses input signal detection schemes to set its configuration.
For Nyquist-rate data converters, three DEM approaches are proposed to be used with a proper layout switching scheme in a proposed new DAC structure. RMDWA and RIDWA have randomization and consecutive selection properties. Randomization effectively suppresses harmonic distortions to achieve good SFDR. Consecutive selection obtains small static output errors when it is used with the presented rotated walk switching scheme. The third DEM approach proposed for Nyquist-rate DACs is RTC, which provides randomization, consecutive selection, and low element switching activity properties. In addition to the benefits of the proposed RMDWA and RIDWA, low element switching activity can achieve small dynamic errors caused by element switching.
To experimentally verify the proposed RTC, a 14-bit ultra low-cost current-steering DAC is implemented in a 1P6M 0.18-μm 1.8-V CMOS process. The measured SFDR is up to 80dB for single-tone tests at a 10MHz sampling frequency. The measurement results show that the RTC can improve the SFDR by 16dB. The 14-bit current-steering DAC has an active area of less than 0.28-mm2. The active area of the DAC is smaller than those of the state-of-the-art DACs with 14-bit resolution. The active area of the DAC is also smaller than those of other published 12-bit and 10-bit DACs.
[1] D. Johns and K. Martin, “Analog integrated circuit design,” John Wiley & Sons, Inc., New York, chapter 11-chapter 14, 1997
[2] M. Vadipour, “Gradient error cancellation and quadratic error reduction in unary and binary D/A converters,” IEEE Trans. Circuits Syst. II, vol. 50, no. 12, pp. 1002-1007, Dec. 2003.
[3] R. T. Baird and T. S. Fiez, “Linearity enhancement of multibit ΔΣ A/D and D/A converters using data weighted averaging,” IEEE Trans. Circuits Syst. II, vol. 42, no. 12, pp. 753-762, Dec. 1995.
[4] I. Galton, “Spectral shaping of circuit errors in digital-to-analog converters,” IEEE Trans. Circuits Syst. II, vol. 44, no. 10, pp. 808-817, Oct. 1997.
[5] R. Schreier and B. Zhang, “Noise-shaped multibit D/A converter employing unit elements,” Electronics Letters, vol. 31, no. 20, pp. 1712-1713, Sept. 28, 1995.
[6] L. A. Williams III, “An audio DAC with 90dB linearity using MOS to metal-metal charge transfer,” in IEEE ISSCC Dig. Tech. Papers, Feb. 1998, pp. 58-59.
[7] R. E. Radke, A. Eshraghi and T. S. Fiez, “A 14-bit current-mode ΣΔ DAC based upon rotated data weighted averaging,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1074-1084, Aug. 2000.
[8] I. Fujimori, L. Longo, A. Hairapetian, K. Seiyama, S. Kosic, J. Cao and S. L. Chan, “A 90-dB SNR 2.5-MHz output-rate ADC using cascaded multibit delta-sigma modulation at 8X oversampling ratio,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1820-1828, Dec. 2000.
[9] K. Vleugels, S. Rabii, and B. A. Wooley, “A 2.5-V sigma-delta modulator for broadband communications applications,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1887-1899, Dec. 2001.
[10] A. A. Hamoui and K. W. Martin, “High-order multibit modulators and pseudo data-weighted-averaging in low-oversampling ΔΣ ADCs for broad-band applications,” IEEE Trans. Circuits Syst. I, vol. 51, no. 1, pp. 72-85, Jan. 2004.
[11] M. Vadipour, “Techniques for preventing tonal behavior of data weighted averaging algorithm in Σ-Δ modulators,” IEEE Trans. Circuits Syst. II, vol. 47, no. 11, pp. 1137-1144, Nov. 2000.
[12] I. Fujimori, A. Nogi, and T. Sugimoto, “A multibit delta-sigma audio DAC with 120-dB dynamic range,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1066-1073, Aug. 2000.
[13] K. D. Chen and T. H. Kuo, “An improved technique for reducing baseband tones in sigma-delta modulators employing data weighted averaging algorithm without adding dither,” IEEE Trans. Circuits Syst. II, vol. 46, no. 1, pp. 63-68, Jan. 1999.
[14] T. H. Kuo, K. D. Chen and H. R. Yeng, “A wideband CMOS sigma-delta modulator with incremental data weighted averaging,” IEEE J. Solid-State Circuits, vol. 37, no. 1, pp. 11-17, Jan. 2002.
[15] T. H. Kuo, K. D. Chen, and J. R. Chen, “Automatic coefficients design for high-order sigma-delta modulators,” IEEE Trans. Circuits Syst. II, vol. 46, no. 1, pp. 6-15, Jan. 1999.
[16] O. J. A. P. Nys and R. K. Henderson, “An analysis of dynamic element matching techniques in sigma-delta modulation,” in Proc. IEEE ISCAS, May 1996, pp. 231-234.
[17] D. H. Lee, “Advanced data weighted averaging technique for multi-bit oversampling data converters,” Master Thesis, June 2001.
[18] F. Chen and B. Leung, “Some observations on tone behavior in data weighted averaging,” in Proc. IEEE ISCAS, May 1998, pp. 500-503
[19] H. van der Ploeg, G. Hoogzaad, H. A. H. Termeer, M. Vertregt, and R. L. J. Roovers, “A 2.5-V 12-b 54-Msample/s 0.25-μm CMOS ADC in 1-mm2 with mixed-signal chopping and calibration,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp.1859-1867, Dec. 2001.
[20] H. T. Jensen and I. Galton, “A low-complexity dynamic element matching DAC for direct digital synthesis,” IEEE Trans. Circuits Syst. II, vol. 45, no. 1, pp. 13-27, Jan. 1998
[21] P. Stubberud and J. W. Bruce, “An analysis of dynamic element matching flash digital-to-analog converters,” IEEE Trans. Circuits Syst. II, vol. 48, no. 2, pp. 205-213, Feb. 2001.
[22] Y. I. Park, S. Karthikeyan, W. M. Koe, Z. Jiang and T. C. Tan, “A 16-bit, 5MHz multi-bit sigma-delta ADC using adaptively randomized DWA,” in Proc. IEEE CICC, Sept. 2003, pp. 115-118.
[23] M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 475-482, March 2003.
[24] Y. Cong and R. L. Geiger, “Switching sequence optimization for gradient error compensation in thermometer-decoded DAC arrays,” IEEE Trans. Circuits Syst. II, vol. 47, no. 7, pp. 585-595, July 2000.
[25] Y. H. Lin, D. H. Lee, C. C. Yang and T. H. Kuo, “High-speed DACs with random multiple data-weighted averaging algorithm,” in Proc. IEEE ISCAS, May 2003, pp. I-993-I-996.
[26] D. H. Lee, Y. H. Lin and T. H. Kuo, “Nyquist-rate current-steering digital-to-analog converters with random multiple data-weighted averaging technique and QN rotated walk switching scheme,” IEEE Trans. Circuits Syst. II, vol. 53, no. 11, pp. 1264-1268, Nov. 2006.
[27] G. A. M. Van der Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert and G. G. E. Gielen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1708-1718, Dec. 1999.
[28] Y. H. Lin, “A 16-bit high-speed DAC with random multiple data-weighted averaging algorithm,” Master Thesis, June 2002.
[29] T. Shui, R. Schreier and F. Hudson, “Mismatch shaping for a current-mode multibit delta-sigma DAC,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 331-338, March 1999.
[30] I. Galton and P. Carbone, “A rigorous error analysis of D/A conversion with dynamic element matching,” IEEE Trans. Circuits Syst. II, vol. 42, no. 12, pp. 763-772, Dec. 1995
[31] A. Van den Bosch, M. Steyaert and W. Sansen, “An accurate statistical yield model for CMOS current-steering D/A converters,” in Proc. IEEE ISCAS, May 2000, pp. 105-108.
[32] M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, Oct. 1989.
[33] A. R. Bugeja, B. S. Song, P. L. Rakers and S. F. Gillig, “A 14-b, 100-MS/s CMOS DAC designed for spectral performance,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1719-1732, Dec. 1999.
[34] D. A. Mercer, “Low-power approaches to high-speed current-steering digital-to-analog converters in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1688-1698, Aug. 2007.
[35] J. Vankka, J. Sommarek, J. Ketola, I. Teikari and K. A. I. Halonen, “A digital quadrature modulator with on-chip D/A converter,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1635-1642, Oct. 2003.
[36] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, “Analysis and design of analog integrated circuits,” John Wiley & Sons, Inc., New York, pp. 331-332, 2001
[37] K. O’Sullivan, C. Gorman, M. Hennessy and V. Callaghan, “A 12-bit 320-MSample/s current-steering CMOS D/A converter in 0.44mm2,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1064-1072, July 2004.
[38] Spectrum Analyzer R&S FSU Data Sheet. ROHDE&SCHWARZ.
[39] K. L. Chan, J. Zhu and I. Galton, “A 150MS/s 14-bit segmented DEM DAC with greater than 83dB of SFDR across the Nyquist band,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2007, pp. 200-201.
[40] J. Hyde, T. Humes, C. Diorio, M. Thomas and M. Figueroa, “A 300-MS/s 14-bit digital-to-analog converter in logic CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp. 734-740, May 2003.
[41] Q. Huang, P. A. Francese, C. Martelli and J. Nielsen, “A 200MS/s 14b 97mW DAC in 0.18μm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2004, pp. 364-365.
[42] T. Chen and G. G. E. Gielen, “A 14-bit 200-MHz current-steering DAC with switching-sequence post-adjustment calibration,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2386-2394, Nov. 2007.
[43] H. H. Chen, J. Lee, J. Weiner, Y. K. Chen and J. T. Chen, “A 14-b 150MS/s CMOS DAC with digital background calibration,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2006, pp. 51-52.
[44] A. Van den Bosch, M. Borremans, M. Steyaert and W. Sansen, “A 12b 500MSample/s current-steering CMOS D/A converter,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2001, pp. 366-367.
[45] J. Deveugele, M. S. J. Steyaert, “A 10-bit 250-MS/s binary-weighted current-steering DAC,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 320-329, Feb. 2006.
[46] A. Van den Bosch, M. A. F. Borremans, M. S. J. Steyaert and W. Sansen, “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 315-324, March 2001.