| 研究生: |
羅濬智 Lo, Chun-Chih |
|---|---|
| 論文名稱: |
高效率超寬頻脈衝波無線傳能系統 Highly Efficient Ultra-Wideband Impulsive Wireless Power Transmission Systems |
| 指導教授: |
楊慶隆
Yang, Chin-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 脈波產生器 、發射器 、超寬頻系統 、整流器 、無線充電 、能量轉換效率 、步階恢復二極體 、漣波雜訊 、無限功率傳輸 |
| 外文關鍵詞: | Pulse generator, transmitter, ultra-wideband system, rectifier, wireless powering, PCE, SRD, ringing, wireless power transmission |
| 相關次數: | 點閱:119 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將超寬頻技術應用於不同的領域以實現一個使用無線脈衝供電之嶄新技術的超寬頻發射器。本研究應用ADS (Advanced Design System)電路模擬軟體進行電路設計、探討與分析,並以實作完整之無線傳能收發系統進行實測,成功驗證無線脈衝傳能之可行性以及電路之效能,此驗證結果相當適合用於低輸入功率之傳能及生醫應用。
為了實現超寬頻能量之發送,必頇設計一個超寬頻脈波產生器,吾人使用步階恢復二極體(Step Recovery Diode, SRD)搭配離散元件製作出一漣波雜訊(Ringing)極低且對稱性極佳之脈波產生電路,其產生脈衝振幅範圍為310mV到876mV、寬度皆為290ps。為了達到超寬頻脈衝波無線供電的目標,必頇考量所產生之脈衝波是否有足夠的頻寬及振幅是否能夠提供足夠的能量,在此使用一頻寬為6GHz之寬頻功率放大器來提升整體超寬頻無線供電發射器的發射能量,以利無線與生醫植入之應用。
超寬頻脈衝波無線供電發射器包含了超寬頻脈衝產生器、寬頻功率放大器、超寬頻天線以及倍壓整流電路,本研究將其逐一實現並以系統整合驗證。為了有效的傳遞UWB能量,發射端天線使用指向性佳、高增益且有著寬頻特性之Horn antenna。超寬頻脈波產生器所產生的脈波訊號經由寬頻功率放大器放大後提供較大的能量並且經由Horn antenna傳遞能量到接收端之超寬頻天線,其所收到之脈衝微波能量送到經由使用Schottky diode組成之倍壓整流電路轉換成直流電壓與電流,供給電池或晶片使用。
在本篇論文此超寬頻脈衝波無線傳能系統已驗證出在整流器輸入功率低於0dBm之低平均功率下仍然可以達成高效率(>80%)的能量轉換。低平均功率的傳能對人體的影響與傷害較小,是生醫植入裝置或晶片不可或缺的一個關鍵技術,且相較於傳統連續波(Contiuous Wave, CW)之高效率無線供電系統在其整流器最佳轉換效率負載與操作設定下,其微波能量接收端之整流器最佳工作點平均輸入功率可減少至20%以下,其能量轉換效率更可高達80%;在脈衝波產生之能量為最佳效率點(頻率為40MHz、振幅為2Vpp到5Vpp方波觸發之超寬頻脈衝波)時,其脈衝波充電系統能更進一步達成90%以上之極高能量轉換效率。此研究結果將對應用於生醫植入裝置上之無線傳能系統帶來一個重大的發現與影響。
This thesis applies UWB technologies in a special aspect for the transmission of energy rather than messages to achieve a novel wireless impulsive powering approach. An UWB transmitter utilizing wireless impulsive powering is implemented. Advanced Design System (ADS), the integrated circuit simulation software, is applied to design,investigate, and analyze the circuits of the impulsive wireless power transmission systems. The whole wireless power transmitting and receiving systems are implemented to validate the feasibility of the wireless impulsive powering and the conversion efficiency of the rectifier circuitry. Experimental results prove that this technique is quite suitable for low input power transmission and biomedical applications.
The UWB pulse generator is designed and developed to fulfill the UWB power transmission. The UWB pulse generator uses step recovery diodes (SRD) combined with discrete components to produce a low ringing and well symmetry monocycle pulse whose peak-to-peak amplitude ranges from 310 mV to 876 mV and pulse width remains 290 ps. In order to achieve the UWB impulsive wireless powering, the bandwidth and amplitude of the UWB pulse shall be considered for sufficient transmission power. For biomedical implant chips and devices, the broadband 6-GHz power amplifier (2GHz-8GHz) is attached to increase the deliverable power of the wireless UWB power supplier.
The UWB impulsive wireless transmission systems include an UWB pulse generator, a broadband power amplifier, an UWB antenna, and a voltage-doubler rectifier. Each module is implemented and the whole system is integrated and valiated. In order to deliver the UWB power efficiently, a horn antenna with high directivity, large gain, and broad bandwidth acts as the transmit antenna. The power of impulsive signals generated by the UWB pulse generator is amplified by the broadband power amplifier and then delivered through the horn antenna. And the received impulsive power is converted by the voltage-doubler rectifier composed of Schottky diodes into a direct current (DC) power to supply the chips or batteries.
In this thesis, the UWB impulsive wireless transmission systems have been proved to achieve high power conversion efficiency (PCE), larger than 80% even when the input power of the rectifier is lower than 0 dBm. Due to the fact that low transmission power has relatively little impacts and causes relatively slight injury to human bodies, it is one of the essential key technologies in biomedical implant chips and devices. Compared to the traditionally continuous wave (CW) powering systems recfiliers oprated at the optimal transmission efficiency condition setup and the specific value load resistor, the overall transmission power to recfilier has been reduced by at least 80%, and the transmission efficiency can still achieve up to 80%. At the operation condition of the optimal power efficiency (the pulse generator is trigger by the 40MHz 2Vpp to 5Vpp square waves, the conversion efficiency of our proposed impulsive system attains to more than 90%, which is the outstanding. These research results will contribute to and make significant impacts on wireless remote powering systems for biomedical implant devices in the future.
[1] http://www.mastergasservice.com/wp711me/?p=174
[2] 江坤山,“寬頻無線傳輸,發射!”2005年 12月科學人雜誌
[3] http://www.intel.com.tw/
[4] http://www.ieee802.org/15/
[5] http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-02-48A1.pdf
[6] 邱佳松,黃國威,陳坤明,“超寬頻無線通訊技術概論,”2003年11月20期電子與材料雜誌
[7] http://www.edntaiwan.com/article-8025
[8] 尤宗旗, 國立成功大學電機所博士論文“應用具諧波抑制與圓極化平面整流天線之無線傳充電系統設計”,97年6月
[9] T. C. Yo, C. M. Lee, C. H. Luo. C. -H. Tu, Y. –Z. Juang. ,”Stacked Implantable Rectenna for Wireless Powering the Medical Implants. ” IEEE AP-S International Symposium., pp.3189-3192, Jun 2007.
[10] http://blog.mapawatt.com/2009/09/02/wireless-electricity/
[11] Kim, H, Park, D., Joo, Y.,”All-digital Low-power CMOS Pulse Generator for UWB system,” Electronics Letters Volume 40, Issue 24, 25 Nov. 2004 Page(s):1534-1535.
[12] Sanghoon Sim, Dong-Wook Kim, Member, IEEE, and Songcheol Hong, “A CMOS UWB Pulse Generator for 6–10 GHz Applications ,” IEEE Microwave Wireless Compon. Lett. Vol. 19, no. 2, pp. 83-85, Feb 2009.
[13] T. Teshirogi, S. Saito, M. Uchino, M. Ejima, K. Hamaguchi, H. Ogawa,and R. Kohno, “Residual-carrier-free Burst Oscillator for Automotive UWB Radar Applications,” Electron. Lett., vol. 41, no. 9, pp. 535–536, Apr. 2005.
[14] J. S Lee and C. Nguyen, “Uniplanar Picosecond Pulse Generator using Step Recovery Diode,” Electronics Letters, vol. 37, no. 8, pp. 504-506, 12 Apr 2001.
[15] J. S Lee and C. Nguyen, “Novel Low-cost Ultra-wideband, Ultra-short-pulse Transmitter with MESFET Impulse-shaping Circuitry for Reduced Distortion and Improved Pulse Repetition rate,” IEEE Microwave Wireless Compon. Lett. Vol. 11, pp. 208-210, May 2001.
[16] J. Han and C. Nguyen, “A new Ultra-Wideband, Ultra-short Monocycle Pulse Generator With Reduced Ringing,” IEEE Microwave Wireless Compon. Lett, vol.12, no.6, pp. 206-208, June 2002.
[17] Wun-Bi Lin, Ying-Te Liu and Fu-Chiarng Chen, “A New Ultra-Wideband Monocycle Pulse Generator Using Second-Order Transient Circuit,” IEEE Microwave Conference, pp. 428 – 431, Oct 2008.
[18] Sheng, H, Orlik, P., Haimovich, A. M., Cimini, L. J., and Zhang, J.:”On the Spectral and Power Requirements for Ultra-widebandTtransmission,” IEEE Int. Conf. on- 83 -Communications, Anchorage, AL USA, Vol. 1, pp.738-742, March 2003.
[19] Stoica, L., Tiuraniemi, S., Rabbachin, A., and Oppermann, I., “An Ultra-wideband TAG Circuit Transceiver Architecture,” IEEE Conf. on Ultra Wideband Sys. And Tech., Kyoto,Japan, pp. 258-262, May 2004.
[20] Z. N. Chen. X. H. Wu, N. Yang and M. Y. W. Chia, “Considerations for Source Pulses and Antennas in UWB Radio Systems,” IEEE Trans. Antennas Propag, vol. 52, pp. 1739-1748, July 2004.
[21] Millman, J., and Hamilton, S. A, “Physical Modeling of the Step Recovery Diode for Pulse and Harmonic Generation Circuits,” Proc. IEEE, 1969, 57, pp. 1250-1259
[22] J. Han and C. Nguyen, “Coupled-slotline-hybrid Sampling Mixer Integrated with Step-recovery-diode Pulse Generator for UWB Applications,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 1875-1882, June 2005.
[23] http://www.aeroflex.com/AMS/Metelics/pdfiles/mmd_sp.pdf
[24] H. Kida, “Measured and Simulated Results of Impulse Generator using Step Recovery Diode,” IEICE Trans. Fundamentals, vol E88-A, No.9, pp. 2381-2383, Sept. 2005.
[25] S. Hamilton and R. Hall, “Shunt-mode harmonic Generation using Step Recovery Diodes,” Microwave J., pp. 69–78, Apr. 1967.
[26] Nattapon Chaimanonart, Wen H. Ko, and Darrin J. Young, “Remote RF Powering System for MEMS Strain Sensors,” IEEE ICSENS, vol 3,pp. 1522-1525, May 2005.
[27] Nattapon Chaimanonart, Keith R. Olszens, Mark D. Zimmerman, Wen H. Ko, and Darrin J. Young, “Implantable RF Power Converter for Small Animal In Vivo Biological Monitoring, ” IEEE IEMBS,pp. 5194-5197, 2005.
[28] Mark D. Zimmerman, Nattapon Chaimanonart, and Darrin J. Young, “In Vivo RF Powering for Advanced Biological Research,” IEEE IEMBS,pp. 2506-2509, 2006.
[29] 李建銘,國立成功大學電機所博士論文“植入式生醫遙測天線實現與寬頻天線設計”,98年1月
[30] ICNIRP, "Guidelines for Limiting Exposure to Time-varying Electric,Magnetic, and Eelectromagnetic Fields (up to 300 GHz)," Health Phys., vol.4, pp. 494-522, 1998.
[31] C. L. Ogden, C. D. Fryar, M. D. Carroll, and K. M. Flegal, "Mean Body Weight, Height, and Body Mass Index, United States 1960–2002,"Centers for Disease Control and Prevention, vol. 347, 2004.
[32] J.-P. Curty, N. Joehl, F. Krummenacher, and C. Dehollain, " A Model for μ-powered Rectifier Analysis and Design," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, vol. 52, 2005.
[33] http://www.minicircuits.com/pdfs/ZRON-8G+.pdf
[34] Soubhi Abou Chahine, Maria Addam, Hadi Abdel Rahim, Areej Itani, Hiba Jomaa , “A Modified Circular Disc Monopole Ultra Wide Band Antenna,” IEEE Advances in Computational Tools for Engineering Application, ACTEA '09 ,pp.71 – 75,July 2009.
[35] J.Liang, C,Chiau, X.Chen, and C.G. Parini, “Analysis and Design of UWB Disc Monopole Antennas”, IEEE seminar on Ultra Wideband Communications Technologies an System Design, 2004.
[36] HSMS-286x Series, Surface Mount Microwave Schottky Detector Diodes, Data Sheet, Avago technology
[37] S. C. Cripps, “RF Power Amplifier for Wireless Communication”, Artech House
[38] G. D. Vendelin, A. M. Pavio, U. L. Rohde, “Microwave Circuit Design Using linear and nonlinear Techniques,” Wiley-Interscience, 1990.
[39] http://www.mimixbroadband.com/Data/Document-Library/CFS0303-SB-mx.pdf
[40] http://www.minicircuits.com/pdfs/ADCH-80A.pdf