簡易檢索 / 詳目顯示

研究生: 張恪維
Chang, Ko-Wei
論文名稱: 半導體奈米線與其異質結構之成長與鑑定
Formation and Characterization of Semiconductor Nanowires and Nanowire Heterostructures
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 172
中文關鍵詞: 奈米線異質結構半導體奈米線氧化鎵磊晶氮化鎵
外文關鍵詞: Ga2O3, semiconductor nanowires, ZnGa2O4, nanowire heterostructures, GaN, VLS, epitaxy
相關次數: 點閱:85下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   一維奈米結構材料(one-dimensional nanostructures),例如: 奈米管,奈米線,奈米柱,其不僅可做為材料的光、電、磁及機械等物性之於 dimensionality 及size的基礎物理研究,並具有很大的潛力應用於奈米光電及功能性奈米結構等元件。本論文主要以bottom up 的方式成長半導體奈米線與其異質結構。

      近年來,致力以VLS (vapor-liquid-solid)成長機制,於高溫(800 oC-1240 oC)環境下,合成單晶氧化鎵(Ga2O3)奈米線之研究不少。本論文第一部份,乃採用鎵金屬(Ga metal)及水氣(H2O),在800 oC爐管中於具Ni觸媒之基板上成長氧化鎵(Ga2O3)奈米線。本研究結果顯示,為了提供充足Ga 蒸氣,將Ga 及水氣(H2O) 到達基板之前分流,能夠有效將氧化鎵(Ga2O3)奈米線直徑縮小並將長度增加。另一個成長氧化鎵(Ga2O3)奈米線的方法則是利用有機金屬化合物(CH3COCHCOCH3)3Ga為先驅物,在850 oC ~ 450 oC爐管中,於具Au觸媒之Si (100)及sapphire (0001)基板上成長氧化鎵(Ga2O3)奈米線。(CH3COCHCOCH3)3Ga在成長中不但能提供充足Ga蒸氣也是在成長氧化鎵(Ga2O3)奈米線提供氧蒸氣主要來源。本研究發現奈米線線徑之大小能藉由成長條件,例如:基板溫度、壓力及Ga蒸氣濃度加以控制。此外,高方向性且整齊排列之氧化鎵(Ga2O3)奈米線亦成功地於450~ 650 oC間成長於具Au觸媒之sapphire (0001)基板。經X光繞射與穿透式電子顯微鏡結構分析得知氧化鎵(Ga2O3)奈米線具(-2,0,1 )方向成長的優勢。當成長溫度提高至750 oC時,花束型奈米柱結構則以VS (vapor-solid)機制於具Au奈米顆粒之基板上成長。

      由於鎵有機金屬化合物裂解溫度低(~196 oC),本論文亦藉由(CH3COCHCOCH3)3Ga及NH3,在低溫下以VLS成長機制於具Ni觸媒之Si基板上成長氮化鎵(GaN)奈米線。穿透式電子顯微鏡分析一維氮化鎵(GaN)奈米結構顯示成長溫度控制於750 oC、650 oC、550 oC能分別成長出筆直奈米線、針狀奈米線及竹節狀奈米針。因此,除了選擇適當觸媒外,於氣相提供充份之先驅物亦是於低溫以VLS機構成長氮化鎵(GaN)奈米線之決定性因素。

      本研究也進一步藉由兩階段成長法合成Ga2O3/ZnO核殼型奈米線。首先將高方向性氧化鎵(Ga2O3)奈米線成長於具Au觸媒之sapphire (0001)基板上,再以此氧化鎵(Ga2O3)奈米線為模板,利用低壓化學氣相沉積法將ZnO沉積其上。進一步利用高溫退火Ga2O3/ZnO核殼型奈米線,於sapphire (0001)基板上會形成高方向性且單晶之ZnGa2O4 奈米線。製備單晶ZnGa2O4奈米線其決定性因素在於ZnO沉積厚度及退火溫度與時間長短。由退火後奈米線之結構分析得知於固態反應(solid state reaction)期間,ZnGa2O4與Ga2O3 相以磊晶關係存在。而ZnGa2O4奈米線的陰極激發光(Cathodoluminescence)光譜顯示其於360 nm及680 nm處具有發光特性。

      利用相同的兩階段成長方式,在Ga2O3奈米線上於溫度400 oC~ 600 oC下,以低壓化學氣相沉積法可形成Ga2O3/TiO2核殼型奈米線。電子顯微鏡分析顯示在400 oC及600 oC形成於Ga2O3奈米線表面之TiO2相分別為非晶質與奈米顆粒所組成。以1000 oC退火1小時後,Ga2O3/TiO2核殼型奈米線可進一步形成高方向性Ga2O3/TiO2 奈米條碼。

     One-dimensional (1-D) nanostructures, such as nanotubes, nanowires, and nanorods have great potential for improving our understanding of the fundamental concepts of the roles of both dimensionality and size on physical properties, as well as for application in nanodevices and functional materials. In this dissertation, a bottom up approach for synthesis of semiconductor nanowires and nanowire hetorostructures are demonstrated.

     Many research efforts have been thus devoted to synthesize single crystal Ga2O3 nanowires via the vapor-liquid-solid (VLS) mechanism under high temperatures (800-1240 °C). In the first part of the dissertation, β-Ga2O3 nanowires were synthesized using Ga metal and H2O vapor in the present of Ni catalyst on the substrate at 800 oC. Two kinds of Ga vapor supply systems are employed in this study. Remarkable reduction of the diameter and increase of the length of the β-Ga2O3 nanowires are achieved by the separation of Ga and H2O vapor before they reach the substrate for a sufficient supply of the Ga vapor. An alternative method to synthesize β-Ga2O3 nanowires on Au- pretreated Si (100) and sapphire (0001) substrates at the temperatures ranging from 850 to 450 °C has also been further experimental by using a single precursor of gallium acetylacetonate ((CH3COCHCOCH3)3Ga) that could provide not only sufficient Ga vapor but also O vapor during the nanowires growth. Size control of the nanowire diameters was achieved by varying the growth conditions, i.e., substrate temperatures, pressures, and Ga vapor concentration. In addition, selective growth of vertically well-aligned Ga2O3 nanowires has been successfully grown on Au-coated sapphire (0001) substrates at temperatures of 450~ 650 oC. Structural characterization of the Ga2O3 nanowires by X-ray-diffraction (XRD) and transmission electron microscopy (TEM) reveals that the nanowires are preferentially oriented in the (-2,0,1) direction. Formation of the flower-like nanorod bundles at a temperature of 750 oC via the VS mechanism is also demonstrated.

     Next, we demonstrated the synthesis of GaN nanowires on Ni-pretreated Si substrates via the VLS mechanism at temperatures lower than those have been reported using ammonia gas and a Ga organometallic compound, i.e. gallium acetylacetonate, with a low decomposition temperature (~196 oC). Structural characterization of the 1D GaN nanostructures by HRTEM shows that straight GaN nanowires, needle-like nanowires (nanoneedles), and bamboo-shoot-like nanoneedles are synthesized at 750, 650, and 550 oC, respectively. In addition to selecting a proper catalyst, providing sufficient precursors has been demonstrated to be a crucial factor for the low-temperature growth of 1D GaN nanostructures via the VLS mechanism.
    For the synthesis of the Ga2O3/ZnO core-shell nanowires, a two-stage process was used. Well-aligned β-Ga2O3 nanowires were first grown on Au pre-coated sapphire (0001) substrates. The Ga2O3 nanowires were then used as 1D template for the ZnO-shell deposition. Formation of the well-aligned and single-crystalline ZnGa2O4 nanowires on sapphire (0001) substrates has been achieved via annealing of the Ga2O3/ZnO core-shell nanowires. The thickness of the original ZnO shell and the thermal budget of the annealing process play crucial roles for preparing the single-crystalline ZnGa2O4 nanowires. Structural analyses of the annealed nanowires reveal the existence of an epitixal relationship between ZnGa2O4 and Ga2O3 phases during the solid state reaction. A strong CL emission band centered at 360 nm and a small tail at 680 nm are obtained from the single-crystalline ZnGa2O4 nanowires, suggesting the existence of the oxygen vacancies within them.

     With the similar method as just mention above, we also demonstrate the formation of Ga2O3/TiO2 core-shell heterostructure at the temperature of 400 oC~ 600 oC by low pressure chemical vapor deposition. TEM analyses reveal that the amorphous TiO2 layer and TiO2 nanoparticles were formed on the surfaces of the Ga2O3 nanowires at temperatures of 400 oC and 600 oC, respectively. Well- aligned Ga2O3/TiO2 nano-barcodes were formed after further 1000 oC annealing of the core-shell nanowires for 1 hr.

    Abstract.....................................I Acknowledgement..............................VI Table of contents............................VIII List of tables...............................XII List of figures..............................XIII Chapter 1 Introduction..........................1 1.1 Nanotechnology: An Invitation to Enter a New Field of Physics................1 1.2 Nanometer Scale Approach: Bottom-Up and Top-Down..............................3 1.3 One-dimensional nanostructures of building blocks.......................4 1.4 Overview of the thesis................16 Chapter 2 Background............................18 2.1. Vapor-Solid (VS) process.............19 2.1.1 Fundamentals of the chemical vapor deposition (CVD) method..........19 2.1.2 Screw dislocation growth.........21 2.1.3 Evaporation-condensation growth..22 2.1.4 Anisotropic growth...............27 2.2 Vapor-Liquid-Solid (VLS) growth.......28 2.3 Oxide-assisted Growth.................34 2.4 Template-based synthesis..............36 2.4.1 Channels in porous materials.....36 2.4.2 Templating against existing nanostructures...................38 2.5 Self-masked dry etching technique.....40 2.6 Electrospinning.......................42 2.7 Syntheses of 1D Ga2O3 nanostructures..42 2.8 Syntheses of 1D GaN nanostructures....48 Chapter 3 Synthesis and Characterization of One-Dimensional β-Ga2O3 Nanostructures.............54 3.1 Synthesis of β-Ga2O3 nanowires by vapor-liquid-solid method using Ga metal and H2O vapor...................56 3.1.1 Experimental detail..............56 3.1.2 Results and discussion...........57 3.1.3 Summary..........................62 3.2 Low-temperature Catalytic Growth of β-Ga2O3 Nanowires Using Single Organometallic Precursor..............63 3.2.1 Experimental detail..............63 3.2.2 Results and discussion...........64 3.2.2.1 Growth Temperatures Effect..64 3.2.2.2 N2(Ga)/N2 Flow Rate Ratio Effect......................72 3.2.2.3 Pressures Effect............75 3.2.3 Summary..........................79 3.3 One-Dimensional β-Ga2O3 Nanostructures on Sapphire (0001): Low-Temperature Epitaxial Nanowires and High-Temperature Nanorod Bundles...........80 3.3.1 Experimental detail..............80 3.3.2 Results and discussion...........82 3.3.2.1 Substrates Effect on Ga2O3 nanowire growth at a temperature of 650 oC.......82 3.3.2.2 Temperature Effect..........83 3.3.2.3 Optical properties of the well-aligned Ga2O3 nanowires..90 3.3.3 Summary..........................92 3.4 Conclusion............................93 Chapter 4 Temperature-controlled catalytic growth of one-dimensional gallium nitride nanostructures using a gallium organometallic precursor........95 4.1 Experimental detail...................96 4.2 Results and discussion................97 4.2.1 1-D GaN nanostructures grown at 850 oC...............................97 4.2.2 GaN nanowires grown at 750 oC...101 4.2.3 GaN nanoneedles grown at 650 oC.108 4.2.4 1-D GaN nanostructures grown at 550 oC..........................113 4.3 Conclusion...........................117 Chapter 5 Formation of well-aligned ZnGa2O4 nanowires from Ga2O3/ZnO core-shell nanowires via Ga2O3/ZnGa2O4 epitaxial relationship...........120 5.1 Experimental detail..................121 5.2 Results and discussion...............122 5.3 Conclusion...........................132 Chapter 6 Formation of β-Ga2O3-TiO2 “Nanobarcodes” from Core/Shell Nanowires.....135 6.1 Experimental detail..................136 6.2 Results and discussion...............137 6.2.1 Formation of the Ga2O3/TiO2 core-shell nanowires.................137 6.2.2 Formation of the Ga2O3-TiO2 nanobarcodes....................142 6.2.3 Formation mechanism of the Ga2O3-TiO2 nanobarcodes...............147 6.3 Conclusion...........................150 Chapter 7 Conclusions..........................151 References.....................................156 List of Publications...........................169 About the writer...............................172

    [1] http://www.zyvex.com/nanotech/feynman.html
    [2] K. E. Drexler, Bulletin of Science, Technology & Society, 2004, 24, 21.
    [3] http://www.zyvex.com/nano/
    [4] G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 1982, 49, 57.
    [5] G. Binnig, C. F. Quate. Ch. Gerber, Phys. Rev. Lett. 1986, 56, 930.
    [6] http://www.almaden.ibm.com/vis/stm/stm.html
    [7] S. Iijima, Nature 1991, 354, 56.
    [8] Nanostructures and nanomaterials: Synthesis, Properties and Applications, G. Cao, Imperial College Press, 2003, p.7.
    [9] G. M. Whitesides, J. C. Love, Scientific American, 2001, 285, 38.
    [10] http://gmwgroup.harvard.edu/domino/html/webpage/homepage2.nsf/
    [11] Handbook of Nanostructured Materials and Nanotechnology, H. S. Nalwa, Academic Press, New York 2000.
    [12] Nanostructured Materials: Clusters, Composites, and Thin Film, V. M. Shalaev, M. Moskovits, American Chemical Society, Washington, DC 1997.
    [13] Introduction to Solid State Physics (Seventh edition), C. Kittel, John Wiley & Sons, Inc., New York.
    [14] A.P. Alivisatos, Science 1996, 271, 933.
    [15] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 1998, 281, 2013.
    [16] X. G. Peng, J. Wickham, A. P. Alivisatos, ibid. 1998, 120, 5343.
    [17] A. A. Guzelian, et al., ibid. 1996, 100, 7212.
    [18] D. Kovalev, M. B. Chorin, J. Diener, F. Koch, Al. L. Efros, M. Rosen, N. A. Gippius, S. G. Tikhodeev, Appl. Phys. Lett. 1995, 67, 1585.
    [19] J. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang, A. P. Alivisatos, Science 2001, 292, 2060.
    [20] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 2001, 292, 1897.
    [21] J. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, R. J. Saykally, P. Yang, Nature Mater. 2002, 1, 106.
    [22] S. Frank, P. Poncharal, Z. L. Wang, W. A. Heer, Science 1998, 280, 1744.
    [23] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 2001, 409, 66.
    [24] Y. Cui, C. M. Lieber, Science 2001, 291, 851
    [25] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett. 2003, 3, 149.
    [26] Y. Huang, X. Duan, Y. Cui, C. M. Lieber, Nano Lett. 2002, 2, 101.
    [27] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, C. M. Lieber, Science 2001, 294, 1313.
    [28] A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 2001, 294, 1317.
    [29] Y. Huang, X. Duan, C. M. Leiber, Small 2005, 1, 142.
    [30] M. Gudiksen, L. Lauhon, J. Wang, D. Smith, C. M. Lieber, Nature 2002, 415, 617.
    [31] X. Duan, Y. Huang, R. Argarawal, C. M. Lieber, Nature 2003, 421, 241.
    [32] Y Cui, Q. Wei, H. Park, C. M. Lieber, Science 2001, 293, 1289.
    [33] M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Angew. Chem. Int. Ed. 2002, 41, 2405.
    [34] F. C. Frank, Discuss. Faraday Soc. 1949, 5, 48.
    [35] Encyclopedia of Nanoscience and Nanotechnology, S. Sharma, H. Li, H. Chandrasekaran, R. C. Mani, M. K. Sunkara, 2004, 10, 327.
    [36] X. S. Peng, G. W. Meng, J. Zhang, X. F. Wang, Y. W. Wang, C. Z. Wang, L. D. Zhang, J. Mater. Chem. 2002, 12, 1602.
    [37] Y. Yin, G. Zhang, Y. Xia, Adv. Funct. Mater. 2002, 12, 293.
    [38] Z. R. Dai, J. L. Gole, J. D. Stout, Z. L. Wang, J. Phys. Chem. B 2002, 106, 1274.
    [39] P. D. Yang, C. M. Leiber, J. Mater. Res. 1997, 12, 2981.
    [40] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001, 291, 1947.
    [41] Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. 2003, 13, 9.
    [42] J. M. Blakely, K. A. Jackson, J. Chem. Phys. 1962, 37, 428.
    [43] Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang, Y. Zhang, Adv. Funct. Mater. 2004, 14, 943.
    [44] Z. L. Wang, X. Y. Kong, J. M. Zuo, Phys. Rev. Lett. 2003, 91, 185502.
    [45] D. Moore, C. Ronning, C. Ma, Z. L. Wang, Chem. Phys. Lett. 2004, 385, 8.
    [46] J. J. Wu, S. C. Liu, J. Phys. Chem. B, 2002, 106, 9546.
    [47] R. A. Laudise, A. A. Ballman, J. Phys. Chem. 1960, 64, 688.
    [48] W.-J. Li, E.-W. Shi, W.-Z. Zhong, Z.-W. Yin, J. Cryst. Growth 1999, 203, 186.
    [49] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
    [50] Y. Wu, P. Yang,J. Am. Chem. Soc. 2001, 123, 3165.
    [51] T. I. Kamins, X. Li, R. S. Williams, X. Liu, Nano Lett. 2004, 4, 503.
    [52] J. L. Taraci, J. W. Dailey, T. Clement, D. J. Smith, J. Drucker, S. T. Picraux, Appl. Phys. Lett. 2004, 84, 5302.
    [53] P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Han, M. Meyyappan, Nano Lett. 2004, 4, 651.
    [54] J. Lao, J. Huang, D. Wang, Z. Ren, Adv. Mater. 2004, 16, 65.
    [55] K. W. Chang, J. J. Wu, J. Phys. Chem. B, 2002, 106, 7796.
    [56] L. E. Jensen, M. T. Bjork, S. Jeppesen, A. I. Persson, B. J. Ohlsson, L. Samuelson, Nano Lett. 2004, 4, 1961.
    [57] Y. Wu, P. Yang, Chem. Mater. 2000, 12, 605.
    [58] Y. J. Zhang, Q. Zhang, N. L. Wang, Y. J. Yan, H. H. Zhou, J. Zhu, J. Cryst. Growth 2001, 226, 185.
    [59] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, J. Vac. Sci. Technol. 1997, B15, 554.
    [60] M. Yazawa, M. Kohuchi, A. Muto, K. Hiruma, Adv. Mater. 1993, 5, 577.
    [61] K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakibayashi, J. Appl. Phys. 1995, 77, 447.
    [62] C. C. Chen, C. C. Yeh, Adv. Mater. 2000, 12, 738.
    [63] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, J. Vac. Sci. Technol. 2001, 19, 1115.
    [64] J. Zhang, X. S. Peng, X. F. Wang, Y. W. Wang, L. D. Zhang, Chem. Phys. Lett. 2001, 345, 372.
    [65] X. Duan, C. M. Leiber, Adv. Mater. 2000, 12, 298.
    [66] Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, X. S. Peng, Chem. Phys. Lett. 2002, 357, 314.
    [67] Y. W. Wang, G. W. Meng, L. D. Zhang, C. H. Liang, J. Zhang, Chem. Mater. 2002, 14, 1773.
    [68] Y. J. Chen, J. B. Li, Y. S. Han, X. Z. Yang, J. H. Dai, J. Cryst. Growth 2002, 245, 163.
    [69] X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, J. J. Du, Chem. Phys. Lett. 2001, 336, 53.
    [70] M. H. Huang, Y. Wu, H. Feick, E. Webber, P. Yang, Adv. Mater. 2000, 13, 113.
    [71] Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, J. Am. Chem. Soc. 2002, 124, 1817.
    [72] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, S. Q. Feng, Physica E 2001, 9, 305.
    [73] W. Q. Han, P. Kohler-Redlich, F. Ernst, M. Ruhle, Solid State Commun. 2000, 115, 527.
    [74] M. S. Gudiksen, C. M. Leiber, J. Am. Chem. Soc. 2000, 122, 8801.
    [75] C. M. Leiber, MRS Bull. 2003, 28, 486.
    [76] L. J. Lauhon, M. S. Gudiksen, C. M. Leiber, Phil. Trans. R. Soc. Lond. A 2004, 362, 1247.
    [77] M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, L. Samuelson, Appl. Phys. Lett. 2002, 80, 1058.
    [78] Y. Wu, R. Fan, P. Yang, Nano Lett. 2002, 2, 83.
    [79] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Leiber, Nature 2002, 420, 57.
    [80] F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, C. M. Leiber, Nano Lett. 2004, 4, 1975.
    [81] S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, J. Mater. Res. 1999, 14, 4503.
    [82] W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, S. T. Lee, Adv. Mater. 2000, 12, 1343.
    [83] Y. F. Zheng, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, S. T. Lee, Phys. Rev. B 2000, 61, 4518.
    [84] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, Adv. Mater. 2001, 13, 591.
    [85] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
    [86] H. Chik, J. M. Xu, Mater. Sci. Eng. R 2004, 43, 103.
    [87] N. I. Kovtyukhova, B. R. Martin, J. K. N. Mbindyo, T. E. Mallouk, M. Cabassi, T. S. Mayer, Mater. Sci. Eng. C 2002, 19, 255.
    [88] M. S. Sander, L. S. Tan, Adv. Funct. Mater. 2003, 13, 393.
    [89] C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, S. T. Lee, Adv. Mater. 2003, 15, 838.
    [90] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, C. P. Tripp, Adv. Mater. 2004, 16, 2052.
    [91] Y. Li, G. W. Meng, L. D. Zhang, Appl. Phys. Lett. 2000, 76, 2011.
    [92] Y. C. Wang, I. C. Leu, M. H. Hon, J. Cryst. Growth 2002, 237-239, 564.
    [93] B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Chem. Mater. 1997, 9, 857.
    [94] G. Shi, C. M. Mo, W. L. Cai, L. D. Zhang, Solid State Commun. 2000, 115, 253.
    [95] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, P. Yang, Nature 2003, 422, 599.
    [96] J. Hwang, B. Min, J. S. Lee, K. Keem, K. Cho, M. Y. Sung, M. S. Lee, S. Kim, Adv. Mater. 2004, 16, 422.
    [97] J. Hu, Y. Bando, Z. Liu, J. Zhan, D. Golberg, T. Sekiguchi, Angew. Chem.Int. Ed. 2004, 43, 63.
    [98] Y. Li, Y. Bando, D. Golberg, Adv. Mater. 2003, 15, 581.
    [99] Y. C. Zhu, Y. Bando, L. W. Yin, Adv. Mater. 2004, 16, 331.
    [100] X. Jiang, B. Mayers, T. Herricks, Y. Xia, Adv. Mater. 2003, 15, 1740.
    [101] R. He, M. Law, R. Fan, F. Kim, P. Yang, Nano Lett. 2002, 2, 1109.
    [102] Z. L. Wang, Z. R. Dai, R. P. Gao, Z. G. Bai, J. L. Gole, Appl. Phys. Lett. 2000, 77, 3349.
    [103] H. W. Seo, S. Y. Bae, J. Park, H. Yang, B. Kim, J. Phys. Chem. B 2003, 107, 6739.
    [104] J. Hu, Y. Bando, Z. Lu, Adv. Mater. 2003, 15, 1000.
    [105] W. Han, A. Zettl, Adv. Mater. 2002, 14, 1560.
    [106] Y. Li, Y. Bando, D. Golberg, Adv. Mater. 2004, 16, 93.
    [107] J. Cao, J. Z. Sun, J. Hong, H. Y. Li, H. Z. Chen, M. Wang, Adv. Mater. 2004, 16, 84.
    [108] H. F. Zhang, C. M. Wang, L. S. Wang, Nano Lett. 2002, 2, 941.
    [109] Y. C. Zhu, Y. Bando, D. F. Xue, F. F. Xu, D. Golberg, J. Am. Chem. Soc. 2003, 125, 14226.
    [110] R. Ma, Y. Bando, Chem. Mater. 2002, 14, 4403.
    [111] C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, K. H. Chen, Nano Lett. 2004, 4, 471.
    [112] H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, L. C. Chen, Appl. Phys. Lett. 2003, 83, 1420.
    [113] D. Li, Y. Wang, Y. Xia, Nano Lett. 2003, 3, 1167.
    [114] D. Li, Y. Xia, Nano Lett. 2003, 3, 555.
    [115] D. Li, Y. Wang, Y. Xia, Adv. Mater. 2004, 16, 361.
    [116] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J. Wendorff, Adv. Mater. 2001, 13, 70.
    [117] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis, Adv. Mater. 2003, 15, 1161.
    [118] Z. R. Dai, Z. W. Pan, Z. L. Wang, J. Phys. Chem. B, 2002, 106, 902.
    [119] J. Zhang, F. Jiang, Chem. Phys. 2003, 289, 243.
    [120] B. C. Kim, K. T. Sun, K. S. Park, K. J. Im, T. Noh, M. Y. Sung, S. Kim, S. Nahm, Y. N. Choi, S. S. Park, Appl. Phys. Lett. 2002, 80, 479.
    [121] C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, Appl. Phys. Lett. 2001, 78, 3202.
    [122] J. Y. Li, Z. Y. Qiao, X. L. Chen, L. Chen, Y. G. Gao, M. He, H. Li, Z. M. Cao, Z. Zhang, J. Alloys Comp. 2000, 306, 300.
    [123] H. J. Chun, Y. S. Choi, S. Y. Bae, H. W. Seo, S. J. Hong, J. Park, H. Yang, J. Phys. Chem. B. 2003, 107, 9042.
    [124] Y. Wang, J. Xu, R. M. Wang, D. P. Yu, Micron, 2004, 35, 447.
    [125] L. Fu, Y. Liu, P. Hu, K. Xiao, G. Yu, D. Zhu, Chem. Mater. 2003, 15, 4287.
    [126] X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun, J. J. Du, Chem. Phys. Lett. 2000, 328, 5.
    [127] G. Gundiah, A. Govindaraj, C. N. R. Rao, Chem. Phys. Lett. 2002, 351,189.
    [128] Y. H. Gao, Y. Bando, T. Sato, Y. F. Zhang, X. Q. Gao, Appl. Phys. Lett. 2002, 81, 2267.
    [129] J. Zhang, L. Zhang, Solid State Commun. 2002, 122, 493.
    [130] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G.-S. Park, W. B. Choi, N. S. Lee, J. M. Kim, Adv. Mater. 2000, 12, 746.
    [131] G. S. Park, W. B. Choi, J. M. Kim, Y. C. Choi, Y. H. Lee, C. B. Lim, J. Cryst. Growth, 2000, 220, 494.
    [132] J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, S. T .Lee, J. Phys. Chem. B, 2002, 106, 9536.
    [133] S. Sharma, M. K. Sunkara, J. Am. Chem. Soc. 2002, 124, 12288.
    [134] L. Fu, Z. Liu, Y. Liu, B. Han, J. Wang, P. Hu, L. Cao, D. Zhu, J. Phys. Chem. B, 2004, 108, 13074.
    [135] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, S. Q. Feng, Solid State Commun. 1999, 109, 677.
    [136] T. F. Huang, A. Marshall, S. Spruytte, Jr. Harris, J. Crystal Growth 1999, 200, 362.
    [137] M. Asif Khan, A. Bhattarai, J. N. Kuznia, D. T. Olson, Appl. Phys. Lett. 1993, 63, 1214.
    [138] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Jpn. J. Appl. Phys. Part 2 1996, 35, L74.
    [139] S. Nakamura, Science, 1998, 281, 956.
    [140] G. Fasol, Science, 1996, 272, 1751.
    [141] F. A. Ponce, and D. P. Bour, Nature, 1997, 386, 351.
    [142] K. Reimann, M. Steube, O. Brrandt, H. Yang, K. H. Ploog, J. Appl. Phys. 1998, 84, 2971.
    [143] D. Wang, Y. Hiroyama, M. Tamura, M. Ichikawa, S. Yoshida, Appl. Phys. Lett. 2000, 76, 1683.
    [144] Z. J. Li, X. L. Chen, H. J. Li, Q. Y. Tu, Z. Yang, Y. P. Xu, B. Q. Hu, Appl. Phys. A 2001, 72, 629.
    [145] J. Li, Z. Qiao, X. Chen, Y. Cao, M. He, J. Phys.:Condens. Matter 2001, 13, L285.
    [146] M. He, P. Zhou, S. N. Mohammad, G. L. Harris, J. B. Halpern, R. Jacobs, W. L. Sarney, L. S-Riba, J. Crystal Growth 2001, 231, 357.
    [147] H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, S. T. Lee, Chem. Phys. Lett. 2000, 327, 263.
    [148] X. Chen, J. Li, Y. Cao, Y. Lan, H. Li, M. He, C. Wang, Z. Zhang, Z. Qiao, Adv. Mater. 2000, 12, 1432.
    [149] M. He, I. Minus, P. Zhou, S. N. Mohammed, J. B. Halpern, Appl. Phys. Lett. 2000, 77, 3731.
    [150] X. Duan, C. M. Leiber, J. Am. Chem. Soc. 2000, 122, 188.
    [151] J. Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, Y. C. Lan, J. Crystal Growth 2000, 213, 408.
    [152] C. C. Tang, S. S. Fan, H. Y. Dang, P. Li, Y. M. Liu, Appl. Phys. Lett. 2000, 77, 1961.
    [153] W. Q. Han, A. Zettl, Appl. Phys. Lett. 2002, 80, 303.
    [154] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, Y. F. Chen, J. Am. Chem. Soc. 2001, 123, 2791.
    [155] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, Chem. Phys. Lett. 2001, 345, 377.
    [156] S. Y. Bae, H. W. Seo, J. Park, H. Yang, H. Kim, S. Kim, Appl. Phys. Lett. 2003, 82, 4564.
    [157] T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, P. Yang, Nano Lett. 2003, 3, 1063.
    [158] J. K. Jian, X. L. Chen, Q. Y. Tu, Y. P. Xu, L. Dai, M. Zhao, J. Phys. Chem. B, 2004, 108, 12024.
    [159] T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P. Yang, Nature Mater. 2004, 3, 524.
    [160] H. M. Kim, T. W. Kang, K. S. Chung, Adv. Mater. 2003, 15, 567.
    [161] J. Khanderi, A. Wohlfart, H. Parala, A. Devi, J. Hambrock, A. Birkner, R. A. Fischer, J. Mater. Chem. 2003, 13, 1438.
    [162] J. Hu, Y. Bando, D. Golberg, Q. Liu, Angew. Chem. 2003, 115, 3617.
    [163] L. W. Yin, Y. Bando, Y. C. Zhu, D. Golberg, L. W. Yin, M. S. Li, Appl. Phys. Lett. 2004, 84, 3912.
    [164] X. Sun, Y. Li, Angew. Chem. Int. Ed. 2004, 43, 3827.
    [165] H. H. Tippins, Phys. Rev. 1965, 140, A316.
    [166] M. R. Lorenz, J. F. Woods, R. J. Gambino, J. Phys. Chem. Solid 1967, 28, 403.
    [167] T. Harwig, G. J. Wubs, G. J. Dirksen, Solid State Commun. 1976, 28, 1223.
    [168] J. Frank, M. Fleischer, H. Meixner, Sens, Actuators B 1996, 34, 373.
    [169] J. Frank, M. Fleischer, H. Meixner, Sens, Actuators B 1998, 48, 318.
    [170] M. Ogita, N. Saika, Y. Nakanishi, Y. Hatanaka, Appl. Surf. Sci. 1999,142, 188.
    [171] D.D. Edwards, T.O. Mason, F. Goutenoir, K.R. Poeppelmeier, Appl. Phys. Lett. 1997, 70, 1706.
    [172] T. Harwig, F. Kellendonk, J. Solid State Chem. 1978, 24, 255.
    [173] V. I. Vasil’tsiv, Ya. M. Zakharko, Ya. I. Prim, Ukr. Fiz. Zh 1988, 33, 1320.
    [174] L. Binet, D.Gourier, J. Phys. Chem. Solids 1998, 59, 1241.
    [175] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, S. Q. Feng, Solid State Commun. 1999, 109, 677.
    [176] Y. T. Lee, J. Park, Y. S. Choi, H. Ryu, H. J. Lee, J. Phys. Chem. B. 2002, 106, 7614.
    [177] Silicon VLSI Technology, J. D. Plummer, M. Deal. P. B. Griffin; Prentice Hall Press: New Jersey, 2000; Chapter 6.
    [178] C. Bower, O. Zhou, W. Zhu, D. J. Werder, S. Jin, Appl. Phys. Lett. 2000, 77, 2767.
    [179] R. E. Honig, D. A. Kramer, RCA Rev. 1969, 30, 285.
    [180] W. Han, S. Fan, Q. Li, Y. Hu, Science 1997, 277, 1287.
    [181] G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, Appl. Phys. Lett. 1999, 75, 2455.
    [182] G. S. Cheng, S. H. Chen, X. G. Zhu, Y. Q. Mao, L. D. Zhang, Mater. Sci. Eng. A. 2000, 286, 165.
    [183] S. Strite, H. Morkoc, J. Vac. Sci. Technol. B 1992, 10, 1237.
    [184] Shota Kitamura, Kazumasa Hiramatsu, Nobuhiko Sawaki, Jpn. J. Appl. Phys. 1995, 34, L1184.
    [185] H. Okumura, H. Hamaguchi, G. Feuillet, Y. Ishida, S. Yoshida, Appl. Phys. Lett. 1998, 72, 3056.
    [186] T. Suski,; P. Perlin,; H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, M. Bockowski, S. Porowski, T. D. Moustakas, Appl. Phys. Lett. 1995, 67, 2188.
    [187] C. Ma, Y. Ding, D. Moore, X. Wang, Z. L. Wang, J. Am. Chem. Soc. 2004, 126, 708.
    [188] Y. Ding, X. D. Wang, Z. L. Wang, Chem. Phys. Lett. 2004, 398, 32.
    [189] C. Ma, D. Moore, J. Li, Z. L. Wang, Adv. Mater. 2003, 15, 228.
    [190] J. L. Rouviere, J. L. Weyher, M. Seelmann-Eggebert, S. Porowski, Appl. Phys. Lett. 1998, 73, 668.
    [191] Aya Moustafa Sayed Elahl, Maoqi He, Peizhen Zhou, G. L. Harris, J. Appl. Phys. 2003, 94, 7749.
    [192] Y. Gao, Y. Bando, T. Sato, K. Yoshizo, Jpn. J. Appl. Phys. 2001, 40, 1065.
    [193] I. K. Jeong, H. L. Park, and S. I. Mho, Solid State Commun. 1998, 108, 823.
    [194] S. K. Choi, H. S. Moon, S. I. Mho, T. W. Kim, and H. L. Park, MRS Bull. 1998, 33, 693.
    [195] L. E. Shea, R. K. Datta, and J. J. Brown, Jr., J. Electrochem. Soc. 1994, 141, 2198.
    [196] Y. E. Lee, D. P. Norta, C. Park, and C. M. Roulean, J. Appl. Phys. 2001, 89, 1653.
    [197] S. Itoh, H. Toki, Y. Sato, K. Morimoto, T. Kishino, J. Electrochem. Soc. 1991, 138, 1509.
    [198] I. J. Hsieh, K. T. Chu, C. F. Yu, M. S. Feng, J. Appl. Phys. 1994, 76, 3735.
    [199] S. G. Kim, S. H. Lee, N. H. Park, Y. H. Hwang, H. L. Park, Solid State Commun. 1999, 110, 515.
    [200] S. H. M. Poort, D. Cetin, A. Meijerink, G. Blasse, J. Electrochem. Soc. 1994, 144, 2179.
    [201] Structural Inorganic Chemistry, A. F. Wells, Oxford University Press, London, 1975, p.489.
    [202] L. E. Shea, R. K. Datta, and J. J. Brown, Jr., J. Electrochem. Soc. 1994, 141, 1950.
    [203] I. K. Jeong, H. L. Park, and S. I. Mho, Solid State Commun. 1998, 105, 179.
    [204] T. Minami, Y. Kuroi, T. Miyata, H. Yamada, S.Takata, J. Lumin. 1997, 72, 997.
    [205] H. M. Kahan, R. M. Macfarlane, J.Chem. Phys. 1971, 54, 5197.
    [206] T. Omata, N.Ueda, K. Ueda, Appl. Phys. Lett. 1994, 64, 1077.
    [207] Z. Yan, H. Takei, H. Kawazoe, J. Am. Ceram. Soc. 1998, 81, 180.
    [208] H. Kawazoe, K. Ueda, J. Am. Ceram. Soc. 1999, 82, 3330.
    [209] S. Y. Bae, H. W. Seo, C. W. Na, J. Park, Chem. Commun. 2004, 16, 1834.
    [210] K. W. Chang, J. J. Wu, Adv. Mater. 2004, 16, 545.
    [211] C. W. W. Hoffman, J. J. Brown, J. Inorg. Nucl. Chem.. 1968, 30, 63.
    [212] J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park. G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, M. Han, Appl. Phys. Lett. 2003, 82, 2029.
    [213] Atsushi Fukuoka, Naonori Higashimoto, Yuzuru Sakamoto, Shinji Inagaki, Yoshiaki Fukushima, Masaru Ichikawa, Micropor. Mesopor Mater. 2001, 48, 171.
    [214] M. Ogita, N. Saika, Y. Nakanishi, Y. Hatanaka, Appl. Surf. Sci. 1999,142, 188.
    [215] K. Nakagawa, M. Okamura, N. Ikenaga, T. Suzuki, T. Kobayashi, J. Chem. Soc., Chem. Commun. 1998, 1025.
    [216] K. Nakagawa, C. Kajita, K. Okumura, N. Ikenaga, M. Nishitani-Gamo, T. Ando, T. Kobayashi, T. Suzuki, J. Catal. 2001, 203, 87.
    [217] A. Fujishima, K. Honda, Nature 1972, 238, 37.
    [218] B. O’Regan, M. Gratzel, Nature 1971, 353, 737.
    [219] C. Barbe, F. Arendse, F. Comte, M. Jirousek, F. Lenzmann, V. Sklover, M. Gratzel, J. Am. Ceram. Soc. 1997, 80, 3157.
    [220] M. Gomez, J. Rodriguez, S.-E. Lindquist, C. G. Granqvist, Thin Solid Films 1999, 342, 148.
    [221] K. Vinodgopal, P. Kamat, Chemtech. 1996, 26, 18.
    [222] L. Su, Z. Lu, J. Photochem. Photobiol. A 1998, 107, 254.
    [223] Benjaram M. Reddy, Ibram Ganesh, Ettireddy P. Reddy, Asuncion Fernandez, Panagiotis G. Smirniotis, J. Phys. Chem. B. 2001, 105, 6227.
    [224] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Leiber, Nature 2002, 420, 57.
    [225] H. M. Lin, Y. L Chen, J. Yang, Y. C. Liu, K. M. Yin, J. J. Kai, F. R. Chen, L. C. Chen, Y. F. Chen, C. C. Chen, Nano. Lett. 2003, 3, 537.
    [226] R. M. Gibb, J. S. Anderson, J. Solid State Chem. 1972, 5, 212.
    [227] S Kamiya, R. J. D. Tilley, J. Solid State Chem. 1977, 22, 205.

    下載圖示 校內:2006-06-10公開
    校外:2006-06-10公開
    QR CODE