| 研究生: |
闕立凱 Chueh, Li-Kai |
|---|---|
| 論文名稱: |
以無網格法模擬波浪與結構物作用分析 Simulation and Analysis of Waves Interaction with Structures Using Meshless Method |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 無網格法 、局部近似(local approximation) 、修正有限配點法 |
| 外文關鍵詞: | meshless, modified finite point method, Lagrangian description |
| 相關次數: | 點閱:71 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本模式以無網格方法所建立之三維模式,求解拉普拉斯方程式(Laplace equation),模擬孤立波與規則波。本數值模式主要架構為Wu and Tsay(2012)和Wu et al.(2014)發展之二維無網格模式,其特色是以局部近似(Local approximation)的方法求解,此舉加快了其運算的效率。後經本研究修改其造波邊界及增至三維模式,而進行模試驗證。
本研究之驗證分兩部分,分別為Beji and Battjes(1994)規則波通過潛堤之試驗和Chambarel et al.(2009)驗證孤立波撞擊直立壁之試驗。從前者的驗證結果,不僅與試驗結果吻合,更在計算效率上明顯比黃大祐(2012)無網格法之結果更好,更進一步觀察全域之調和波高圖,討論其規則波在通過潛堤時之能量傳遞之情形;後者模擬結果與Chambarel et al.(2009)之邊界積分法模擬結果比較,也有不錯的吻合度。
但波浪與結構物之作用為三維問題,並且在二維模式下,波浪與結構物之交互作用所產生的繞射與折射之現象是無法觀察得到,因此將二維模式擴展至三維模式並應於Mo(2010)的孤立波通過圓柱之問題及Whalin(1971)的規則波通過變水深底床的問題,為本研究之核心問題。
The purpose of the present study is to develop a three-dimensional, fully nonlinear wave model using meshless method based on Wu and Tsay (2012). This meshless method utilizes local approximation to solve the governing equations which is more efficient than that used RBF-collocation counterpart. Furthermore, due to its Lagrangian description of flow motion, this meshless method is powerful in dealing with moving boundaries such as free surface, landslide and wave-maker boundaries.
To validate the developed three-dimensional model, both two-dimensional and three-dimensional experiments were tested and compared. Particularly, for two-dimensional cases, regular waves propagation over a submerged trapezoidal breakwater (Beji and Battjes (1994)) and a solitary wave interaction with vertical wall (Chambarel et al. (2009)) were conducted. The comparisons show this model can efficiently and accurately capture the associated hydrodynamic processes. The model is then applied to three-dimensional experiments including a solitary wave interacting with a circular cylinder (Mo, 2010) and regular waves pass an uneven bottom (Whalin, 1970, 1971). The present simulated results agree the measured data pretty well, indicating that the present model can well capture important phenomenon such as wave refraction and diffraction.
1. Byatt-Smith, J. G. B.(1971): An integral equation for unsteady surface waves and a comment on the Boussinesq equation., Journal of Fluid Mechanics., 49, pp. 625–633.
2. Beji, S. and Battjes, J.A.,(1994):Numerical Simulation of Nonlinear Wave Propagation over a Bar., Coastal Engineering, 23(1-2)pp. 1-16.
3. J. Chambarel, C. Kharif, and J. Touboul(2009): Head-on collision of two solitary waves and residual falling jet formation., Nonlinear Processes in Geophysics., 16,pp. 111-122.
4. Chan, R. K. C. and Street, R. L. (1970): A computer study of finite-amplitude water waves., Journal of Computation Physics., 6, pp68–94.
5. Cooker, M. J., Weidman, P. D., and Bale, D. S.(1997), Reflection of a high-amplitude solitary wave at a vertical wall, Journal of Fluid Mechanics., 342, pp. 141–158.
6. Franke, C., (1982), Scattered Data Interpolation : Test of Some Methods. Mathematics of Computation, 38, pp. 181-200.
7. Gingold, R. and Maraghan, J.,(1977), Smoothed Particle Hydrodynamics: Theory and Applications to Non-Spherical Stars. Monthly Notices of the Royal Astronomical Society, 181, pp. 375-389.
8. Hardy, R.L., (1971), Multiquadric Equations of Topography and Other Irregular Surfaces. Journal of Geophysical Research, 76(8), pp. 1905-1915.
9. Kansa, E.J., (1990), Multiquadrics-A Scattered Data Approximation Scheme with Applications to Computational Fluid Dynamics-II Solutions to Parabolic, Hyperbolic and Elliptic Partial Differential Equations. Computers and Mathematics with Applications,19(8-9), pp. 147-161.
10. Li, C.-W. and Lin, P., (2001), A numerical study of three-dimensional wave interaction with a square cylinder. Ocean Engineering, 28(12), pp. 1545-1555.
11. Liu, P. L.-F., Lin, P. P., Chang K.-A., and T. Sakakiyama (1999), Numerical modeling of wave interaction with porous structures. Journal of Waterway, Port, Coastal and Ocean Engineering, 125(6), pp. 322-330
12. Ma, Q.W., Wu, G.X. and Yue. D.K.P. (2001), Computations of fully nonolinear three-dimensional wave-wave and wave-body interactions. part 2. nonlinear waves and forces on a body. Journal of Fluid Mechanics., 438, pp. 41-65.
13. Maxworthy, T. (1976), Experiments on collisions between solitary waves., Journal of Fluid Mechanics., 76, pp. 177–185.
14. Mo, Weihua (2010), Numerical Investigation of Solitary Wave Interaction with Group of Cylinders, Published Doctoral Dissertation., Cornell University.
15. Su, C. H. and Mirie, R. M. (1980), On head-on collisions between two solitary waves., Journal of Fluid Mechanics., 98, pp. 509–525
16. Whalin, R. W. (1970), Wave Refraction Theory in a Convergence Zone, Proceeding s of 12th Conference on Coastal Engineering, Washington, D.C., 12, pp. 451-470
17. Whalin, R.W., (1971), The limit of applicability of linear wave refraction theory in convergence zone. Res. Rep. H-71-3, U.S. Army Corps of Engineers, Waterways Expt.Station, Vicksburg, MS.
18. Wu, Chin H.; Young, Chih-Chieh; Chen, Qin; and Partrick J.Lynett. (2010), Efficient Nonhydrostatic Modeling of Surface Waves from Deep to Shallow Water. Journal of Waterway, Port, Coastal , and Ocean Engineering, 136(2),pp.104-118
19. Wu, N.-J., Chang, K.-A.(2011). Simulation of free-surface waves in liquid sloshing using a domain-type meshless method. International Journal for Numerical Method in Fluids, 67: pp. 269-288.
20. Wu, N.-J., Tsay, T.-K.(2012), A robust local polynomial collocation method., International Journal for Numerical Methods in Engineering., 93, pp. 355-375
21. Wu, N.-J., Tsay, T.-K., Chen Y.-Y. (2014), Generation of stable solitary waves by a piston-type wave maker., Wave Motion., 51, pp. 240-255
22. 朱翌成(2012), 利用修正有限配點法對二維自由液面勢流流場之數值模擬. 國立台灣大學工學院土木工程學系研究所碩士論文
23. 黃大祐(2012), 以無網格方法模擬海底崩移所造成之波浪傳遞與溯升. 國立成功大學水利及海洋工程研究所碩士論文, pp21-29