簡易檢索 / 詳目顯示

研究生: 楊佶欽
Yang, Chi-Chin
論文名稱: 解析去耦合孔彈性偏微分方程式特性之理論與數值研究
Analytical decoupling of poroelasticity equations for acoustic wave propagation and attenuation in a porous medium containing two immiscible fluids.
指導教授: 羅偉誠
Lo, Wei-cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 51
中文關鍵詞: 膨脹波去耦合孔彈性力學
外文關鍵詞: poroelasticity, dilatational wave, decoupled
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 孔彈性理論在工程的應用中已經被廣泛地認為可以精確地分析含兩種非混合流體孔隙介質內複雜力學機制的有效解析方法。然而,孔彈性理論其偏微分方程式中所含之慣性阻力項、黏滯阻力項和應力項均為互相耦合 (coupled)。因此,除非在特定情況,並無法求出其邊界值問題的封閉 (closed-form) 之穩態解析解。本研究證明,未飽和孔隙介質的孔彈性理論之偏微分方程式可以被成功地去耦合成為三個赫姆霍茲 (Helmholtz) 方程式,在物理上意指在未飽和孔隙介質中存在有三種不同膨脹波。我們所導出之赫姆霍茲方程式其正向座標為複數值且在頻率域內可以表示成由固體體積應變量和兩個孔隙流體之線性體增量所組成的三種不同線性組合,亦可表示成由總正向應力和兩種孔隙流體壓力所組成之三種不同線性組合。由數值計算結果亦顯示,在含兩種非混合流體之孔隙介質中,由赫姆霍茲方程式所表示的三種膨脹波的波速和衰減係數與之前未去耦合的頻率方程式解出之數值結果完全相同。如此,在不同邊界條件下,未飽和孔隙介質膨脹波的傳遞和衰減行為,可以成功地由赫姆霍茲方程式精確模擬分析出。

    Poroelastic theory has become an accurate approach to analyzing the complex mechanical behavior of an elastic porous medium containing two immiscible fluids in many subsurface engineering applications. However, the resulting partial differential equations in the theory take on a coupled form in the terms relevant to inertial drag, viscous damping, and applied stress. Except in special cases, it is difficult to obtain closed-form, steady-state analytical solutions for boundary-value problems.
    In the present study, we demonstrate that these partial differential equations can be decoupled into three Helmholtz equations featuring complex-valued, frequency-dependent normal coordinates for dilatational wave motions, physically corresponding to three independent modes of dilatational waves. The normal coordinates in turn can be expressed as three different linear combinations of the solid dilatation and the linearized increment of fluid content for each pore fluid in the frequency domain, or as three different linear combinations of total dilatational stress and two pore fluid pressures, representations which are applicable respectively to strain-controlled and stress-prescribed boundary conditions.
    Numerical simulation shows that the phase speed and attenuation coefficient of the three dilatational waves calculated from the Helmholtz equations we derived are exactly the same as those obtained previously form the dispersion relations of the coupled partial differential equations. Thus, dilatational wave motions in unsaturated porous media subject to suitable boundary conditions can be accurately modeled by our Helmholtz equations analytically.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VI 圖目錄 VII 符號說明 VIII 第一章 緒論 1 1.1文獻回顧 1 1.2研究動機 5 1.3本文架構 6 第二章 未飽和彈性孔隙介質傳波模式 7 2.1理論模式 7 第三章 去耦合模式方程式 12 3.1 去耦合模式方程式 12 3.2 數值模擬 18 3.3數值結果 21 3.4簡化成Biot的孔彈性力學之去耦合模式方程式 41 第四章 結論與建議 44 4.1結論 44 4.2 建議 45 參考文獻 46

    1. Bear J, and Y. Bachmat, Introduction to modeling of
    transport phenomena in porous media, Kluwer Academic Publisher, Netherlands, 1991.
    2. Beresnev, I. A., and P. A. Johnson, Elastic-wave stimulation of oil production: a review of methods and results, Geophysics, Vol. 59, no. 6, pp.1000 – 1017,1994.
    3.Berryman J. G., Confirmation of Biot’s theory, Applied Physics Letters, Vol. 37, no. 4, pp. 382-384, 1980.
    4. Berryman J. G., Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies. Journal of the Acoustical Society of America, Vol. 74, no. 6, pp. 1805–1812, 1983.
    5. Berryman J. G., L. Thigpen, and R. C. Y. Chin, Bulk elastic wave propagation in partially saturated porous solids. Journal of the Acoustical Society of America, Vol. 84, no. 1, pp. 360–373, 1988
    6. Biot, M. A., General theory of three-dimensional consolidation, Journal of Applied Physics, Vol. 12, pp. 155–164, 1941.
    7. Biot, M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low-frequency range, Journal of the Acoustical Society of America, Vol. 28, no. 2, pp. 168-178, 1956a.
    8. Biot, M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid, II. Higher frequency range, Journal of the Acoustical Society of America, Vol.28, no. 2, pp.179–191, 1956b
    9. Biot, M. A., and D. G. Willis, The elastic coefficients of the theory of consolidation, Journal of Applied Mechanics, Vol. 24, pp. 594-601, 1957.
    10. Biot, M. A., Mechanics of deformation and acoustic propagation in porous media, Journal of Applied Physics, Vol. 33, no. 4, pp. 1482–1498,1962.
    11. Bishop, A. W., The principle of effective stress, Teknisk Ukeblad, Vol. 39, pp. 859–863, 1959.
    12. Brutsaert, W., The propagation of elastic waves in unconsolidated unsaturated granular mediums, Journal of Geophysical Research, Vol. 69, no. 2, pp. 243-257, 1964.
    13. Brutsaert, W., and J. M. Luthin, The velocity of sound in soils near the surface as a function of the moisture content, Journal of Geophysical Research, Vol. 69, no. 4, pp. 643-652, 1964.
    14. Chandler, R. N., and D. L. Johnson, The equivalence of quasistatic flow in fluid-saturated porous media and Biot’s slow wave in the limit of zero frequency. Journal of Applied Physics, Vol. 52, no 5, pp. 3391–3395, 1981.
    15. Corapcioglu, M. Y., and J. Bear, A mathematical model for regional land subsidence due to pumping: 3 integrated equations for a phreatic aquifers. Water Resource Research, Vol. 19, pp. 895–908, 1983
    16. Cosenza, P., M. Ghoreychi, G. de Marsily, G. Vasseur, and S. Violette, Theoretical prediction of poroelastic properties of argillaceous rocks from in situ specific storage coefficient. Water Resource Research, Vol. 38(10), 1207, doi:10.1029/2001WR001201,2002.
    17. de la Cruz, V.,and T. J. T. Spanos, Seismic wave propagation in a porous medium, Geophysics, Vol. 50, pp. 1556–1565, 1985.
    18. Drew, D. A., and S. L. Passman, Theory of multicomponent fluids, Springer-Verlag, New York, 1999
    19. Dullien, F. L. A., Porous media: fluid transport and pore structure, Academic Press, San Diego, 1992.
    20. Dutta, N. C., and H. Ode, Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model)—Part I: Biot theory, Geophysics, Vol. 11, pp. 1777–1788, 1979.
    21. Finol, A., and Ali. S. M. Farouq, Numerical simulation of oil production with simultaneous ground subsidence, Journal of Petroleum Engineers , Vol. 259, pp. 411–422, 1975.
    22. Gambolati G., P. Teatini, D. Bau’, and M. Ferronato, Importance of poroelastic coupling in dynamically active aquifers of the Po river basin, Italy., Water Resource Research, Vol. 36, No. 9, pp. 2443–59, 2000.
    23. Garg, S. K., and A. H. Nayfeh, Compressional wave propagation in liquid and/or gas saturated elastic porous media, Journal of Applied Physics, Vol. 60, no. 9, pp. 3045–3055, 1986.
    24. Gray, W. G., General conservation equations for multi-phase systems: 4. Constitutive theory including phase change. Advances in Water Resources, Vol. 6, pp. 130–140, 1983.
    25. Johnson, D. L., T. J. Plona, C. Scala, F. Pasierb, and H. Kojima, Tortuosity and acoustic slow waves, Physical Review Letters, Vol. 49, no. 25, pp.1840–1844, 1982.
    26. Johnson, D. L., Recent developments in the acoustic properties of porous media, in Proceedings of the international school of physics “Enrico Fermi” Course XCIII, Frontiers in physical acoustics, edited by Sette, pp. 255–290, 1986.
    27. Kosloff, D., R. F. Scott, and M. Scranton, Finite element simulation of Wilmington oil field subsidence: I. linear modeling, Tectonophys, Vol. 65, pp. 339–368, 1980.
    28. Li, X., L. Zhong, L. J. Pyrak-Nolte, Physics of partially saturated porous media: residual saturation and seismic-wave propagation, Annual Review of Earth and Planetary Sciences, Vol.29, pp. 419–460, 2001.
    29. Lo, W.-C., G. Sposito, E. Majer, Immiscible two-phase fluid flows in deformable porous media, Advances in Water Resources, Vol. 25(8–12), pp. 1105–1117, 2002.
    30. Lo, W.-C., G. Sposito, E. Majer, Wave propagation through elastic porous media containing two immiscible fluids, Water Resources Research, Vol. 41, no. 2, pp. W02025, 2005.
    31. Lo, W.-C., G. Sposito, E. Majer, Low-frequency dilatational wave propagation through fully-saturated poroelastic media, Advances in Water Resources , Vol. 29, no. 3, pp. 408–416, 2006.
    32. Lo, W.-C., Decoupling of the coupled poroelastic equations for quasistatic flow in deformable porous media containing two immiscible fluids, Advance in Water Resources, Vol. 29, no. 12:1893–1900, 2006.
    33. Lo, W.-C., G. Sposito, E. Majer, Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids, Transport in Porous Media, Vol. 68, pp. 91–105, 2007.
    34. Lu, J.-F., Hanyga Linear dynamic model for porous media saturated by two immiscible fluids, International Journal of Solids and Structures, Vol. 42, pp. 2689-2709, 2005.
    35. Maas, C., The use of matrix differential calculus in problems of multiple-aquifer flow, Journal of Hydrology, Vol. 88, pp. 43–67, 1986.
    36. Montgomery, D. R., M. Manga, Steamflow and water well response to earthquakes, Science, Vol. 300, pp. 2047–2049, 2003.
    37. Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research, Vol. 12, no. 3, pp. 513–522, 1976.
    38. Rawls, W. J., J. R. Ahuja, and D. L. Brakensiek, Estimating soil hydraulic properties from soils data, Proceedings of Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, pp.329-341, 1992.
    39. Pride, S. R., A. F. Gangi, and F. D. Morgan, Deriving the equations of motion for isotropic media, Journal of the Acoustical Society of America, Vol. 92, no. 6, pp. 3278–3290, 1992.
    40. Santos, J. E., J. M. Corbero, and J. Douglas, Static and dynamic behavior of a porous solid saturated by a two-phase fluid, Journal of the Acoustical Society of America, Vol. 87, no 4, pp. 1428–1438, 1990a.
    41. Spanos, T., B. Davidson, M. Dusseault, D. Shand, and M. Samaroo, Pressure pulsing at the reservoir scale: a new IOR approach, Journal of Canadian Petroleum Technology, Vol. 42, no. 2, pp. 16–28, 2003.
    42. Stoll, R. D., Acoustic waves in saturated sediments, Physics of sound in marine sediments, edited by L. Hampton , Springer, New York, pp. 19–39, 1974.
    43. Tuncay, K., and M. Y. Corapcioglu, Wave propagation in poroelastic media saturated by two fluids, Journal of Applied Mechanics, Vol. 64, no. 2, pp. 313–320, 1997.
    44. van Genuchten, M. T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, Vol. 44, no. 5, pp. 892–898, 1980.
    45. Wei, C., and K. K. Muraleetharan, A continuum theory of porous media saturated by multiple immiscible fluids: I. Linear poroelasticity, International Journal of Engineering Science, Vol. 40, pp. 1807–1833, 2002.
    46. Wang, H.-F., Theory of linear poroelasticity with applications to geomechanics and hydrogeology, Princeton University Press, Princeton, 2000.
    47. Whitaker, S., Transport equations for multiphase system, Chemical Engineering Science, Vol. 28, no. 1, pp. 139–147, 1973.
    48. 葉昭龍,「彈性波在飽和及未飽和土壤中傳波特性之影響評估」,國立成功大學水利及海洋工程學系碩士論文,2005。

    下載圖示 校內:立即公開
    校外:2009-08-03公開
    QR CODE