簡易檢索 / 詳目顯示

研究生: 江國豪
Chiang, Kao-hou
論文名稱: AB2O6微波介電材料備製與改善之研究
Fabrication and Development of Microwave Dielectric Materials AB2O6
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 95
中文關鍵詞: 介電特性陶瓷
外文關鍵詞: ceramics, dielectric property
相關次數: 點閱:61下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微波介電共振器具有高介電常數、高品質因素和高溫度穩定係數等特性。適合應用於微波濾波器、震盪器和天線。近年來,由於通訊快速發展,元件之縮小化是個重要課題,對於陶瓷通訊元件來說,降低燒結溫度也成為發展陶瓷材料之重要趨勢。本論文針對上述做了兩大部分進行探討和研究:
    一、利用CuO和B2O3作為燒結促進劑,探討不同之參雜量對MgTa2O6, ZnTa2O6, MgNb2O6之燒結溫度及介電特性之影響。添加0.5wt% CuO 於 MgTa2O6 燒結溫度為1400oC可得到最佳之介電特性:εr ~28, Q×f ~58000 (GHz), τf ~18ppm/oC,對於ZnTa2O6陶瓷材料,添加0.5wt% 之CuO 在1230oC下燒結可得到其最佳介電特性:εr ~34.6, Q×f ~65000(GHz), τf ~5ppm/oC,添加0.25wt%之B2O3,在1290oC下燒結可得到其最佳介電特性:εr ~21.5, Q ×f ~ 118000(GHz), τf ~48ppm/oC,由此實驗結果發現原始材料藉由加入燒結促進劑不僅可降低燒結溫度也可以改善其介電特性。
    二、利用兩種不同之陶瓷系統相混合,依不同比例作探討,嘗試發展出新的陶瓷系統。利用MgTiO3之良好介電特性,添加於MgTa2O6, Ca0.6La0.8/3TiO3和Ca0.6Nd0.8/3TiO3陶瓷材料,利用混合法則原理可配製出新的陶瓷材料,其介電特性如下:0.7MgTiO3-0.3MgTa2O6燒結於 1460oC 其介電特性為εr ~ 23, Q ×f ~ 81000(GHz), τf ~ -2ppm/oC,0.8MgTiO3-0.2Ca0.6La0.8/3TiO3 之介電特性為εr ~27, Q ×f ~ 134000 (GHz),τf ~ 7.46 ppm/oC,0.9MgTiO3-0.1Ca0.6Nd0.8/3TiO3在1390oC燒結溫度下燒結可得到其最佳之介電特性:εr ~20, Q ×f ~ 100000 (GHz),τf ~ -8.7 ppm/oC。此外,在燒結過程中由於二次相MgTi2O5之產生,導致其介電特性變差。

    Microwave dielectric resonators which are fabricated by high dielectric constant, low dielectric loss and good temperatur stability of microwave dielectric materials are suitably applied in microwave filters, oscillators and antennas. With the recent progress of microwave communication devices, miniaturization of microwave components for volume efficiency is a major research requirement. To develop microwave dielectric materials, lower sintering temperatures plays an important role in the future. As mentioned above, the main research of this dissertation is divided two parts which preparation of low sintering temperature microwave dielectric resonators and development of new dielectric material systems.
    The effect of CuO and B2O3 additions to AB2O6 (A=Mg and Zn, B=Nb and Ta) were investigated. Not only reduce the sintering temperature effectively but improve the dielectric loss. For 0.5 wt% addition to the MgTa2O6 ceramics sintered at 1400oC, the dielectric properties gave: εr ~28, Q×f ~58000 (GHz), τf ~18ppm/oC. With 0.5 wt% addition of CuO sintered at 1230oC, dielectric properties of ZnTa2O6 ceramic showed:εr ~34.6, Q×f ~65000(GHz), τf ~5ppm/oC. Beside, with 1 wt% CuO-doped sintered 1290oC, the 0ppm/oC value of τf could be achieved. With 0.25 wt% B2O3 addition, a dielectric constant of 21.5, a Q ×f value of 118000(GHz) and a τf value of –48ppm/oC of MgNb2O6 ceramics doped with B2O3 sintered at 1260oC for 3 h are obtained.
    The typical dielectric performances of MgTiO3, MgTa2O6, Ca0.6La0.8/3TiO3 and Ca0.6Nd0.8/3TiO3 ceramics were investigated. The new dielectric material system could be obtained by mixing two materials mentioned above. 0.7MgTiO3-0.3MgTa2O6 ceramic sintered at 1460oC possesses the excellent microwave dielectric properties of εr ~ 23, Q ×f value ~ 81000(GHz) andτf value ~ -2ppm/oC. A dielectric constant of 27, a Q ×f value of 134000 (GHz) and aτf value of 7.46 ppm/oC were obtained for 0.8MgTiO3-0.2Ca0.6La0.8/3TiO3 ceramics. For xMgTiO3-(1-x)Ca0.6Nd0.8/3TiO3 ceramics, the εr value varied from 20 ~ 34, the maximum Q × f value was obtained at 1390oC when x=0.9, the τf value varied from 35 ~ -10ppm/oC. The existence of MgTi2O5 phase would cause a decrease in the Q × f value. The density as well as the the Q × f values increased with the increasing of the sintering temperature and the degradation was observed owing to the abnormal grain growth.

    Contents Abstract I Contents V Acknowledge VII Figure Captions VIII Chapter 1 General Introduction 1 Chapter 2 Theory and Measurements of Dielectric Resonator 5 2 – 1 Dielectric Theorem and Analysis of Dielectric Resonator 5 2 – 2 Measurements of Microwave Dielectric Properties 8 Chapter 3 Effect of Additives on Microstructures and Microwave Dielectric Properties of AB2O6 10 3 – 1 Introduction 10 3 – 2 Experimental Procedures 11 3 – 2 – 1 Sample Preparation 11 3 – 2 – 2 Characteristic Analysis and Measurement of Microwave Dielectric Properties 12 3 – 3 Results and Discussions 13 Chapter 4 Developments of New Dielectric Materials 23 4 – 1 Introduction 23 4 – 2 Experimental Procedures 25 4 – 2 – 1 Sample Preparation 25 4 – 2 – 2 Characteristics Analysis and Measurement of Microwave Dielectric Properties 26 4 – 3 Results and Discussions 26 4 – 4 Conlusions 34 Chapter 5 Conclusions and Future Works 37 5 – 1 Conclusions 37 5 – 2 Future works 40

    [1] R. D. Richtmyer, “ Dielectric Resonators,” J. Appl. Phys. Vol. 10, June 1939, pp. 391-398.
    [2] K. Wakino, K. Minai and H. Tamura, ” Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators ”, J. Am. Ceram. Soc. 67, 278, 1984.
    [3] S. B. Cohn, “ Dissipation Loss in Multi-Coupled Resonator Filter,” Proc. IRE, Vol 47, 1957, pp1342-1348.
    [4] A. Yamada, Y. Utsumi, H. Watarai and K. Sato, “ Preparation of Sr(Zr,Ti)O3 Ceramics and Their Dielectric Properties at Microwave frequencies “, Jpn. J. Appl. Phys., 31 pp3148-3151 1992.
    [5] V. M. Ferreir, F. Azough, I. L. Baptista and R. Freer, ”Magnesium Titanate Microwave Dielectric Ceramics”, Ferroelectrics., 133 pp127-132 1997.
    [6] W. Y. Lin and R. F. Spreyer, “ Dielectric Properties of Microstructure-Controlled Ba2Ti9O20 Resonators”, J. Am. Ceram. Soc., 82 325-30 1999.
    [7] W. Y. Lin and R. F. Spreyer, “ Microwave Properties of Ba2Ti9O20 Doped with Zirconium and Tin Oxides”, J. Am. Ceram. Soc., 82 pp1207-1211 1999.
    [8] T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang and R. E. Newnham, “ Effect of Glass Additions on BaO-TiO2-WO3 Microwave Ceramics”, J. Am. Ceram. Soc., 77 pp1909-1916 1994.
    [9] W. S. Kim, T. H. Hong, E. S. Kim and K. H. Yoon, “ Microwave Dielectric Properties and Far Infrared Reflectively Spectra of the (Zr0.8,Sn0.2)TiO4 Ceramics with Additives “, Jpn. J. Appl. Phys., 37, 5367, 1998.
    [10] R. Kudesia, A. E. Mchale and R. L. Snyder, “Effect of LaO2/ZnO Additives on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics “, J. Am. Ceram. Soc., 77, 3215, 1994.
    [11] H. Ikawa, A. Iwai, Kazayuki, H. Shimojima, K. Urabe and S. Udagawa, “ Phase Transformation and Thermal Expansion of Zirconium and Hafnium Titinates and Their Solid Solutions ”, J. Am. Ceram. Soc., 71,pp120-125, 1988.
    [12] S. I. Hirano, T. Hayashi and A. Hattori, “ Chemical Processing and Microwave Characteristicss of (Zr,Sn)TiO4 Microwave Dielectric “, J. Am. Ceram. Soc., 74, pp1320-1324, 1991.
    [13] N. Michiura, T. Tatekawa, Y. Higuchi and H. Tamara, “ Role of Donor and Acceptor Ions in the Dielectric Loss Tangent of (Zr0.8Sn0.2)TiO4 Dielectric Resonator Material “, J. Am. Ceram. Soc., 78, 1793, 1995.
    [14] K. R. Han, J. W. Jang, S. Y. Cho, D. Y. Jeong and K. S. Hong, “Preparation and dielectric Properties of Low–Temperature-Sinterable (Zr0.8Sn0.2)TiO4 Powder “, J. Am. Ceram. Soc., 81, pp1209-1214, 1998.
    [15] L. Chai, M. A. Akbas, P. K. Davies and J. B. Parise, “Cation Ordering Transformation in Ba(Mg1/3Ta2/3)O3- BaZrO3 Perovskite Solid Solution”, Mat. Res. Bull., 33 pp1261-1269 1998.
    [16] O. Renount, J. P. Boilot and F. Chaput, “ Sol-gel Processing and Microwave Characteristics of Ba(Mg1/3Ta2/3)O3 Dielectrics ”, J. Am. Ceram. Soc., 75 (12) pp3337-3340 1992.
    [17] S. Katayama, I. Yoshinaga, N. Yamada and T. Nagai, , “ Low-Temperature Synthesis of Ba(Mg1/3Ta2/3)O3 Ceramics from Ba-Mg-Ta Alkoxide Precursor ”, J. Am. Ceram. Soc., 79 (8) 2059-2064 1996.
    [18] M. Furuya and A. Ochi, “Microwave Dielectric Properties for Ba(Mg1/3Ta2/3)O3-A(Mg1/2W1/2)O3 (A=Ba, Sr, and Ca) Ceramics”, Jpn. J. Appl. Phys., 33 pp5482-5487 1994.
    [19] T. Nagai, M. Sugiyama, M. Sando and K. Niihara, “ Anomaly in the Infrared Active Phonon Modes and Its Relationship to the Dielectric Constant of (Ba1-xSrx)(Mg1/3Ta1/3)O3 Compound”, Jpn. J. Appl. Phys., 35 5163-5167 1996.
    [20] S. B. Desu and H. M. O’Bryan, “ Microwave Loss of Ba(Zn1/3Ta2/3)O3 Ceramics ”, J. Am. Ceram. Soc., 68 (10) 546 1983.
    [21] A. Yamada, Y. Utsumi and H. Watarai, “ The effect of Mn Addition on Dielectric Properties and Microstructure of BaO-Nd2O3-TiO2 Ceramics “, Jpn. J. Appl. Phys., 30. 9B pp2350-2353 1991.
    [22] C. C. Lee and P. Lin, “ Microwave Dielectric Properties of Microstructures (Ba1-xPbx)O-La2O3-4.7TiO2 Ceramics “, Jpn. J. Appl. Phys., 37. (1998) 878-884.
    [23] K. Kageyama and m. Takata, “ Dielectric Characteristics od PbO-BaO-La2O3-TiO4 at Microwave Frequencies”, Jpn. J. Appl. Phys., 24. Supplement (1995) 1045-1047.
    [24] S. Nishigaki, H. Kato, S. Yano and R. Kimimura, “ Microwave Dielectric Properties of (Ba,Sr)O-Sm2O3-TiO4 ceramics “, Am. Ceram. Soc. Bull., 66 (9) (1987) 1406.
    [25] K. Fukuda, I. Fujii, R. KiToh, Y. Cho and I. Awai, “ Influence of Rare Earth Ions on BaO- TiO4-Rare Earth Oxide Ceramics for Microwave Applications ”, Jpn. J. Appl. Phys., 32 (1993) 1712-1715.
    [26] M. Valant and D. Suvorov, “ New High-Permittivity AgNb1-xTaxO3 Microwave Ceramics: Part II, Dielectric Characteristics”, J. Am. Ceram. Soc., 82 [1] (1999) 88-93.
    [27] M. Valant and D. Suvorov, “ New High-Permittivity AgNb1-xTaxO3 Microwave Ceramics: Part I, Crystal Stuctures and Phase-Decomposition Relations”, J. Am. Ceram. Soc., 82 [1] (1999) 81-87.
    [28] H. T. Kim, S. H. Kim, S. Nahm and J. D. Byun, “ Low-Temperature Sintering and Microwave Properties of Zinc Materitanate-Rutile Mixtures Using Boron”, J. Am. Ceram. Soc., 82 (11) ( 1999 ) 3043-48.
    [29] W. D. Kingery, H. K. Bowen And D. R. Uhlmann, “Introduction to Ceramics”, 2nd Edn J. Wiley, New York, p461 1976.
    [30] D. Kajfez and P. Guillon: Dielectric Resonators (Artech House, Massachusetts, pp345 1986.
    [31] B. W. Hakki and P. D. Coleman, “ A Dielectric Resonator method of Measuring Inductive in the Millimeter Range, IEEE Trans, MTT-16, July 402-406 1985.
    [32] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method”, IEEE Trans, MTT-33, NO. 7, July 1985.
    [33] H. C. Lu, L. E. Burkhart and G. L. Schrader, “Sol-Gel Process for the Preparation of Ba2Ti9O20 and BaTi5O11.” J. Am. Ceram. Soc., 74 968-72 1991
    [34] C. M. Cheng, C. F. Yang, and S. H. Lo,”Sintering and Dielectric Properties of Ba2Ti9O20 Microwave Ceramics by Glass Addition”, Jpn. J. Appl. Phys 36, L1604-1607 1993
    [35] C. S. Hsu and C. L. Huang,”Effects of CuO additive on Sintering and Microwave Dielectric Behavior of LaAlO3 Ceramics” Mat. Res. Bull. 36, pp1365-1368 2001
    [36] C. L. Huang and M. H. Weng,”Effects of CuO Addition on (Zr,Sn)TiO4 Microwave Dielectric Ceramics,” Mat. Res. Bull. 35, pp881 2001
    [37] Hyo-Jong Lee, In-Tae Kim and Kug Sun Hong”Dielectric Properties of AB2O6 Compounds at Microwave Frequencies” Jpn. J. Appl. Phys. Vol. 36 L1318-1320 1997
    [38] Akinori Kan, Hirotaka Ogawa and Hitoshi Ohsato”Influence of microstructure on microwave dielectric properties of ZnTa2O6 ceramics with low dielectric loss”J. of Alloys and Compounds 337 pp303-308 2002
    [39] C. L. Huang and M. H. Weng”Low friable BiNbO4 based Microwave Dielectric”Ceramic International Vol. 27, No. 3, pp. 343-350, 2001
    [40] C. L. Huang and M. H. Weng”Effect of V2O5 and CuO Additions on Microwave Dielectric Characteristics of BiNbO4 Ceramics”J. Mat.Sci. Vol. 35, No. 21, pp. 5443-5447, November 2000
    [41] Cheng-Liang Huang and Yao-Chung Chen, "Influence of V2O5 additions to NdAlO3 Ceramics on Sintering Temperature and Microwave Dielectric Properties," Journal of the European Ceramic Society, Vol. 23, No. 1, pp. 167-173, January 2003
    [42] D. W. Kim, K. H. Ko and K. S. Hong”Influence of Coper Oxide Additions to Zinc Niobate Microwave Ceramics on Sintering Temperature and Dielectric Properties” J. Am. Ceram. Soc. 84 p286 2001
    [43 ] Cheng-Liang Huang, Ming-Hung Weng, Chen-Cher Wu and Chung-Chuang Wei "The Microwave Dielectric Properties and the Microstructures of V2O5 Modified Zr0.8Sn0.2TiO4 Ceramics," Jpn. J. Appl. Phys., Vol. 40, Part 1, No. 2A, pp698-702, 2001
    [44] Cheng-Liang Huang and Yao-Chung Chen, "Influence of V2O5 additions to NdAlO3 Ceramics on Sintering Temperature and Microwave Dielectric Properties," Journal of the European Ceramic Society, Vol. 23, No. 1, pp. 167-173, 2003.
    [45] H. Tamura”Microwave Loss Quality of (Zr,Sn)TiO4”Am. Ceram. Soc. Bull. 73 pp2132-2136 1994
    [46] D. Lin, S. Q. Huang and X. Yao”Phase Structure and Dielectric Properties B2O3-ZnO-Nb2O5-Based Dilectric Ceramics”J. Am. Soc. 76 pp2129-2132 1993
    [47] M. F. Yan, H. C. Ling and W. W. Rhodes”Low-Firing, Temperature-Stable Dielectric Compositions Based on Bismuth Nikel Zinc Niobates”J. Am. Ceram. Soc. 73 pp1106-1107 1990
    [48] H. S. Shulman, M. Testorf, D. Damjanovic and N. Setter”Microstructure, Electrcal Conductively and Piezeolectric Properties of Bismuth Titanate”J. Am. Ceram. Soc. 79 pp3124-3128 1996
    [49] T. Shimada ect. “Dielectric loss and damping constants of lattice vibrations in Ba(Mg1/3,Ta2/3)O3 ceramics” Journal of the European Ceramic Society., Vol. 23, 14, pp2647-2651 2003
    [50] Cheng-Liang Huang and Chung-Long Pan, "Low Temperature Sintering and Microwave Dielectric Properties of (1-x)MgTiO3-xCaTiO3 Ceramics Using Bismuth Additions," Jpn. J. of Appl. Phys., Vol. 41, Part 1, No. 2A, pp. 707-711, February 2002
    [51] Cheng-Liang Huang, Min-Hang Weng and Cheng-Cher Wu, "Improved High Q Value of MgTiO3-CaTiO3 Microwave Dielectric Ceramics at Low Sintering Temperature," Materials Research Bulletin, Vol. 36, No. 15, pp. 2741-2750, December 2001
    [52] Cheng-Liang Huang, Ru-Yung Yang and Ming-Hung Weng "Dielectric Properties of CaTiO3-Ca(Mg1/3Nb2/3)O3 Ceramic System at Microwave Frequency," Japanese Journal of Applied Physics, Vol. 39, Part 1, No. 12A, pp. 6608-6611, December 2000
    [53] M. Yoshida, N. Hara, T. Takada and A. Seki” Microwave dielectric properties of (1−x)CaTiO3–xLi1/2Sm1/2TiO3 ceramics “Jpn. J. Appl. Phys. 36 6818 1997.
    [54] Huang, Cheng-Liang; Chen, Yuan-Bin; Lo, Ching-Wen “New Dielectric Material System of La(Mg1/2Ti1/2)O3-CaTiO3 at Microwave Frequencies” Jpn. J. Appl. Phys. Vol. 44, Issue 5A, pp. 3147 2005.
    [55] Won Woo Cho, Ken-ichi Kakimoto and Hitoshi Ohsato “High-Q Microwave Dielectric SrTiO3-Doped MgTiO3 Materials with Near-Zero Temperature Coefficient of Resonant Frequency” Jpn. J. Appl. Phys. Vol. 43, No. 9A, pp. 6221-6224 2004

    下載圖示 校內:2010-08-16公開
    校外:2012-08-16公開
    QR CODE