簡易檢索 / 詳目顯示

研究生: 江信緯
Chiang, Hsin-Wei
論文名稱: 適用於非線性資料取樣系統之創新型高階反覆學習追蹤器
A Novel High-Order Iterative Learning Tracker for Nonlinear Sampled-Data Systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 43
中文關鍵詞: 數位再設計高階反覆學習控制最佳線性化
外文關鍵詞: Digital redesign, high-order iterative learning control, optimal linearization
相關次數: 點閱:107下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對非線性資料取樣系統提出一個具有高效能追蹤的高階反覆學習追蹤器。藉由高階反覆學習控制機制和具有高增益特性的軌跡追蹤器做結合,此新的演算法則可以減少學習收斂代數和達成更有效的數位軌跡追蹤。針對非線性系統,首先,在每一代裡面,類比非線性系統所轉換的最佳線性化模型會被架構在每一個取樣時間上的操作點。然後,為了在這個最佳線性化模型裡設計一個類比追蹤器,具有高增益特性的線性二次式調節器技術會被應用在高階反覆學習控制器的初始輸入上。這個具有高增益特性的控制器能抑制系統的不確定性誤差,像是模型化的誤差、非線性擾動和外在的干擾。因此,系統的輸出能在很短的時間內快速又準確地追蹤到所設計的軌跡。值得注意的是反覆學習控制器的初始控制輸入會直接影響誤差收斂速度。為了實用的考量,類比線性二次式調節追蹤器會先被利用數位再設計的技術做轉換,然後發展一個新的微分型高階反覆學習控制演算法來應用在非線性資料取樣系統。最後,利用數個多輸入多輸出的例子來說明本論文所提出方法的效果和可行性。

    In this thesis, a novel high-order iterative learning tracker is proposed to resolve the output tracking problem for the nonlinear sampled-data system. The newly developed high-order iterative learning control (ILC) method and the high-gain property tracker design methodology are combined to significantly reduce learning epochs and find the more efficiency digital tracker. For the nonlinear system, the optimal linear model of the analog nonlinear system will be constructed at every sampling time at each iteration by taking the operating state. Thereafter, the linear quadratic regulator (LQR) design technique, with a high-gain property, is applied as the initial control input of high-order ILC to design an analog tracker of the optimal linear model. The high-gain property controllers can suppress the uncertain errors such as modeling errors, nonlinear perturbations, and external disturbances. Thus, the system output can quickly and accurately track the desired reference in a short time interval. Notice that the convergence of ILC is directly influenced by the initial control input. For practical consideration, the introduced linear quadratic analogue tracker (LQAT) is implemented by adopting the prediction-based digital redesign technique to develop a novel D-type high-order ILC algorithm for nonlinear sampled-data systems. Finally, multi-input multi-output (MIMO) numerical examples are presented to illustrate the effectiveness and the feasibility of the proposed method.

    Chapter 1 Introduction...1 Chapter 2 Optimal Linearization of Nonlinear Systems...4 Chapter 3 High-Order Iterative Learning Control...8 Chapter 4 The Prediction-Based Digital Redesign...12 4.1 Digital redesign of the linear quadratic analog tracker...13 4.2 A new high-order iterative learning control using digital redesign tracker...14 4.3 Convergence analysis...17 Chapter 5 Design Procedure...20 Chapter 6 Illustrative Examples...21 Chapter 7 Conclusion...40 References...41

    [1] Arimoto, S., Kawamura, S., and Miyazaki, F., “Bettering operation of robots by learning,” Journal of Robotic Systems, vol. 1, no. 2, pp. 123-140, 1984.
    [2] Bien, Z., “Higher-order iterative learning control algorithm,” Control Theory and Applications, IEE Proceedings D, vol. 136, no. 3, pp. 105-112, 1989.
    [3] Chen, W. S., Li, R. H., and Li, J., “Observer-based adaptive iterative learning control for nonlinear systems with time-varying delays,” International Journal of Automation and Computing, vol. 7, no. 4, pp. 438-446, 2010.
    [4] Chen, F. M., Tsai, J. S. H., Guo, S. M., and Shieh, L. S., “New iterative learning control and high performance tracker for sampled-data systems,” Journal of Machine Learning Research. (in review).
    [5] Du, Y. Y., Tsai, J. S. H., Guo, S. M., Su, T. J., and Chen, C. W., “Observer-based iterative learning control with evolutionary programming algorithm for MIMO nonlinear systems,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 3, pp. 1357-1373, 2011.
    [6] Fang, X., Chen, P., and Shao, J., “Optimal higher-order iterative learning control of discrete-time linear systems,” Control Theory and Applications, IEE Proceedings D, vol. 152, no. 1, pp. 43-48, 2005.
    [7] Gunnarsson, S. and Norrlof, M., “On the disturbance properties of high order iterative learning control algorithms,” Automatica, vol. 42, no. 11, pp. 2031-2034, 2006
    [8] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker : A prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
    [9] Kawamura, S., Miyazaki, F., and Arimoto, S., “Realization of robot motion based on a learning method,” IEEE Transactions on System, Man and Cyberentic , vol.18, no. 1, pp. 126-134, 1988.
    [10] Kim, T. A. and Sugie, T., “An iterative learning control based identification for a class of MIMO continue-time systems in the presence of fixed input disturbance and measurement noises,” International Journal of Systems Science, vol. 38, no. 9, pp. 737-748, 2007.
    [11] Kuo, B. C., Digital Control System. New York: Holt, Rinehart and Winston, 1980.
    [12] Li, X. D., Chow, T. W. S., and Ho, J. K. L., “Iterative learning control for a class of nonlinear discrete-time systems with multiple input delays,” International Journal of Systems Science, vol. 39, no. 4, pp. 361-369, 2008.
    [13] Liu, C., Xu, J., and Wu, J., “On iterative learning control with high-order internal models,” International Journal of Adaptive Control and Signal Processing, vol. 24, no. 9, pp. 731-742, 2010.
    [14] Meng, D., Jia, Y., Du, J., and Yu, F., “Initial shift problem for robust iterative learning control systems with polytopic-type uncertainty,” Automatica, vol. 41, no. 7, pp. 825-838, 2010.
    [15] Norrlof, M., “An adaptive iterative learning control algorithm with experiments on an industrial robot,” IEEE Transactions on Robotics and Automation, vol. 18, no. 2, pp. 245-251, 2002.
    [16] Ruan,X., Bien, Z., and Park, K. H., “Iterative learning controllers for discrete-time large-scale systems to track trajectories with distinct magnitudes,” International Journal of Systems Science ,vol. 36, no. 4, pp. 221-233, 2005.
    [17] Tayebi, A. and Xu, J. X., “Observer-based iterative learning control for a class of time-varying nonlinear systems,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 50. no. 3, pp. 452-455, 2003.
    [18] Tsai, J. S. H., Du, Y. Y., Zhuang, W. Z., Guo, S. M., Chen, C. W., and Shieh, L. S., “Optimal anti-windup digital redesign of multi-input multi-output control systems under input constraints,” IET Control Theory Applications, vol. 5, no. 3, pp. 447-464, 2011.
    [19] Wu, S. C. and Tomizuka, M.,“An iterative learning control design for self-servowriting in hard disk drives,” Mechatronics, vol. 20, no. 1, pp. 53-58, 2010.

    下載圖示 校內:2022-12-31公開
    校外:2022-12-31公開
    QR CODE