簡易檢索 / 詳目顯示

研究生: 高沛綸
Kao, Pei-Lun
論文名稱: BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/CNF/Epoxy複合試片之製作與電磁微波吸收特性之研究
Fabrication of BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/CNF/Epoxy Composites and Study on the Properties of Microwave Absorption
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 77
中文關鍵詞: 鋇錳銅鈦鐵氧體煆燒溫度銅錳鈦莫耳比例電磁吸波材料CNF
外文關鍵詞: Barium ferrite, mole ratio, CNF, sintering temperature, microwave absorbing material
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本計畫研究以鋇錳銅鈦鐵氧體BaFe12-x(Mn0.5Cu0.5Ti)x/2O19為電磁吸收材料主要成分,並與Epoxy混合製成複合吸波試片,在背置金屬板的條件下,以數值分析方式探討如何降低其反射損失的方法。本研究實驗中以鋇錳銅鈦鐵氧體中錳、銅及鈦莫耳比例x、粉體製備的煆燒溫度為實驗變數,並在頻率範圍2~18GHz內量測該複合吸波試片的複導磁係數與複介電常數。以12GHz為中心頻率的條件下,探討在何種製作參數下可以得到最佳的反射損失及較薄的試片厚度,另外探討摻雜CNF後的樣本與未摻雜樣本在吸波能力及應用條件上的差異。本實驗結果中,在煆燒溫度1250℃且微量取代比例x=1的條件下,以粉體50wt%之比例所製備的BaFe11(Mn0.5Cu0.5Ti)1/2O19(x=1)/Epoxy試片在12GHz時有較高的磁損耗能力,但介電損耗能力仍不明顯,經數值分析後於12GHz時的匹配厚度為7.3mm時,反射損失數值為-18.47dB,-10dB頻寬為2.1533GHz,與當初設立之目標比較,僅達成-10dB頻寬大於2GHz的標準。為改善介電損耗能力較低的情況,將添加CNF進行摻雜。
    本研究分別以0.5wt%及1wt%之CNF對50wt%的BaFe11(Mn0.5Cu0.5Ti)1/2O19(x=1)粉體進行摻雜,並與Epoxy製成BaFe11(Mn0.5Cu0.5Ti)1/2O19/CNF/Epoxy試片,結果顯示於12GHz的介電損耗正切數值將與CNF摻雜量成正比,於1wt%摻雜量時有最高介電損耗正切0.22,但磁損耗正切卻與CNF摻雜量成反比,推測原因可能是因為CNF含量的增加,導致複合材料內部的磁通量不連續,進而使磁損耗正切數值下降。
    在12GHz時,當CNF摻雜量為0.5wt%且試片厚度為5.85mm時,反射損失達-42.42dB,-10dB頻寬為1.51GHz,-20dB頻寬為0.61GHz,當CNF摻雜量提升至1wt%時,試片厚度將減少至1.95mm,卻也犧牲反射損失及頻寬數值,僅達-11.3dB,而-10dB頻寬為1.49GHz,由此可發現摻雜少量的CNF將有較佳反射損失數值,若再提升CNF摻雜量雖無法提升反射損失數值,但可使試片厚度更加輕薄。總結以上可得知當CNF摻雜比例為0.5wt%時的反射損失數值較好,其-10dB頻寬甚至優於1wt% CNF摻雜量之表現。

    This study systematically analyzed the effect of sintering temperature and mole ratio x(x=1,2,3) on the reflection loss for BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/CNF/Epoxy as a wave absorber centered at 12GHz (Ku band) to reduce interference of electromagnetic waves. The barium ferrite powders were prepared by using solid phase synthesis method. Complex permeability and permittivity were deduced from measured S-parameter and reflection loss was calculated accordingly for the composite material with assumed thickness and backed on a metal plate. The largest magnetic loss tangent of barium ferrite occurred with x = 1 and sintering temperature of 1250℃. The theoretical computation suggested that the lowest reflection loss at 12 GHz was -42.42 dB for a composite material with a thickness of 5.85 mm and consisting of 50wt% of barium ferrite and 0.5wt% of CNF.

    目錄 摘要 I 目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 4 第二章 電磁吸收與屏蔽理論 6 2-1 電磁干擾 6 2-2 電磁吸波材料內的電磁波行為 8 2-2-1 電磁波吸收材料之損失理論 8 2-2-2 電磁波在損耗性介質中行為 11 2-2-3 複介電常數、複導磁係數量測方法 13 2-2-4 電磁波正向入射損耗性介質 18 2-2-5 吸波材料對於電磁波的反射原理 20 第三章 吸波材料分類與特性 24 3-1 磁性吸波材料 24 3-1-1 磁鉛石(M-type)鐵氧體 24 3-1-2 固相合成法 26 3-2 複合吸波材料 29 3-2-1 複合材料組成 29 3-2-2 CNF(Carbon NanoFibers)對吸波能力之影響 30 第四章 實驗程序與量測方法 32 4-1 粉體原料 32 4-2 鋇鐵氧粉體製作與比重量測 32 4-2-1 粉體製作 32 4-2-2 粉體密度量測 33 4-3 試片製作與量測 35 4-3-1 同軸試片製作 35 4-3-2 吸波試片電磁參數量測 37 4-3-3 網路分析儀量測 38 4-3-4 反射損失推算 40 4-3-5 拉曼光譜儀 40 4-4 實驗規劃與執行方式 42 4-4-1 鋇鐵氧體BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/Epoxy試片量測及特性探討 42 4-4-2 鋇鐵氧體BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/Epoxy 同軸試片反射損失探討 43 4-4-3 鋇鐵氧體BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/Epoxy/CNF試片量測及特性探討 43 4-4-4 鋇鐵氧體BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/CNF/Epoxy 同軸試片反射損失探討 44 第五章 實驗結果與討論 45 5-1 鋇鐵氧體BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/Epoxy試片量測及特性探討 45 5-1-1 鋇鐵氧體BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/Epoxy試片本質特性量測與探討 45 5-1-2 鋇鐵氧體BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/Epoxy 試片密度分析 56 5-1-3 鋇鐵氧體BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/Epoxy 試片之反射損失探討 57 5-1-4 鋇鐵氧體BaFe12-x(Mn0.5Cu0.5Ti)x/2O19/Epoxy 拉曼光譜量測探討 61 5-2 BaFe11(Mn0.5Cu0.5Ti)1/2O19/CNF/Epoxy試片量測及特性探討 63 5-2-1 鋇鐵氧體BaFe11(Mn0.5Cu0.5Ti)1/2O19/CNF/Epoxy 試片本質特性量測與探討 63 5-2-2 鋇鐵氧體BaFe11(Mn0.5Cu0.5Ti)1/2O19/CNF/Epoxy 拉曼光譜量測探討. 67 5-2-3 鋇鐵氧體BaFe11(Mn0.5Cu0.5Ti)1/2O19/CNF/Epoxy同軸試片之反射損失推算 68 第六章 結論 72 參考文獻 74

    參考文獻
    [1] Z. Kassas, J. Morales, and J. Khalife, "New-age satellite-based navigation--STAN: simultaneous tracking and navigation with LEO satellite signals," Inside GNSS Magazine, vol. 14, no. 4, pp. 56-65, 2019.
    [2] M. Sheetz. "FCC authorizes SpaceX to provide mobile Starlink internet service to boats, planes and trucks." Consumer News and Business, CNBC. https://www.cnbc.com/2022/06/30/fcc-approves-spacex-starlink-service-to-vehicles-boats-planes.html (accessed 07/15, 2022).
    [3] J. Fomon. "Here's How Fast Starlink Has Gotten Over the Past Year." https://www.ookla.com/articles/starlink-hughesnet-viasat-performance-q1-2022 (accessed.
    [4] S. Ramasamy, "A review of EMI shielding and suppression materials," in Proceedings of the International Conference on Electromagnetic Interference and Compatibility'99 (IEEE Cat. No. 99TH 8487), 1997: IEEE, pp. 459-466.
    [5] S. Abbas, M. Chandra, A. Verma, R. Chatterjee, and T. Goel, "Complex permittivity and microwave absorption properties of a composite dielectric absorber," Composites Part A: applied science and manufacturing, vol. 37, no. 11, pp. 2148-2154, 2006.
    [6] Y. Feng, T. Qiu, and C. Shen, "Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite," Journal of Magnetism and magnetic materials, vol. 318, no. 1-2, pp. 8-13, 2007.
    [7] C. Lee, H. Song, K. Jang, E. Oh, A. Epstein, and n. J. Joo, "Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films," Synthetic Metals, vol. 102, no. 1-3, pp. 1346-1349, 1999.
    [8] F. M. Idris, M. Hashim, Z. Abbas, I. Ismail, R. Nazlan, and I. R. Ibrahim, "Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies," Journal of Magnetism and Magnetic Materials, vol. 405, pp. 197-208, 2016.
    [9] L. Rashid and A. Brown, "Radar cross-section analysis of wind turbine blades with radar absorbing materials," in 2011 8th European Radar Conference, 2011: IEEE, pp. 97-100.
    [10] M. Qin, L. Zhang, and H. Wu, "Dielectric loss mechanism in electromagnetic wave absorbing materials," Advanced Science, vol. 9, no. 10, p. 2105553, 2022.
    [11] W. Ye, Q. Sun, and G. Zhang, "Effect of heat treatment conditions on properties of carbon-fiber-based electromagnetic-wave-absorbing composites," Ceramics International, vol. 45, no. 4, pp. 5093-5099, 2019.
    [12] S. Gairola, V. Verma, A. Singh, L. Purohit, and R. Kotnala, "Modified composition of barium ferrite to act as a microwave absorber in X-band frequencies," Solid State Communications, vol. 150, no. 3-4, pp. 147-151, 2010.
    [13] S. Sugimoto et al., "M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range," IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 3154-3156, 1999.
    [14] A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, and M. Salehi, "Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite," Journal of Magnetism and Magnetic Materials, vol. 302, no. 2, pp. 429-435, 2006.
    [15] V. K. Chakradhary and M. J. Akhtar, "Design of Ultrathin Radar Absorbing Structure Using CNF-Barium Ferrite Based Nanocomposites for Stealth Applications," in 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019: IEEE, pp. 986-988.
    [16] V. K. Chakradhary, A. Ansari, H. B. Baskey, and M. J. Akhtar, "Ultrathin and Lightweight Functionalized CNF Mixed Barium Ferrite Nanocomposite for Stealth Applications," in 2021 IEEE MTT-S International Microwave and RF Conference (IMARC), 2021: IEEE, pp. 1-4.
    [17] B. G. Soares, G. M. Barra, and T. Indrusiak, "Conducting polymeric composites based on intrinsically conducting polymers as electromagnetic interference shielding/microwave absorbing materials—A review," Journal of Composites Science, vol. 5, no. 7, p. 173, 2021.
    [18] A. Ohlan, K. Singh, A. Chandra, and S. Dhawan, "Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4–18 GHz," Applied physics letters, vol. 93, no. 5, p. 053114, 2008.
    [19] M. González, J. Pozuelo, and J. Baselga, "Electromagnetic shielding materials in GHz range," The Chemical Record, vol. 18, no. 7-8, pp. 1000-1009, 2018.
    [20] L. Wang et al., "Recent progress of microwave absorption microspheres by magnetic–dielectric synergy," Nanoscale, vol. 13, no. 4, pp. 2136-2156, 2021.
    [21] 程雋, 靜電磁理論. 文笙書局股份有限公司, 2012.
    [22] B. Wang, J. Wei, Y. Yang, T. Wang, and F. Li, "Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite," Journal of Magnetism and Magnetic Materials, vol. 323, no. 8, pp. 1101-1103, 2011.
    [23] A. Nicolson and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on instrumentation and measurement, vol. 19, no. 4, pp. 377-382, 1970.
    [24] R. Jotania, "Crystal structure, magnetic properties and advances in hexaferrites: A brief review," in AIP Conference Proceedings, 2014, vol. 1621, no. 1: American Institute of Physics, pp. 596-599.
    [25] R. C. Pullar, "Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics," Progress in Materials Science, vol. 57, no. 7, pp. 1191-1334, 2012.
    [26] A. Ghasemi, A. Hossienpour, A. Morisako, X. Liu, and A. Ashrafizadeh, "Investigation of the microwave absorptive behavior of doped barium ferrites," Materials & design, vol. 29, no. 1, pp. 112-117, 2008.
    [27] J. Qiu, M. Gu, and H. Shen, "Microwave absorption properties of Al-and Cr-substituted M-type barium hexaferrite," Journal of magnetism and magnetic materials, vol. 295, no. 3, pp. 263-268, 2005.
    [28] C. Dong, X. Wang, P. Zhou, T. Liu, J. Xie, and L. Deng, "Microwave magnetic and absorption properties of M-type ferrite BaCoxTixFe12− 2xO19 in the Ka band," Journal of magnetism and magnetic materials, vol. 354, pp. 340-344, 2014.
    [29] X. Wang et al., "Effect of sintering temperature on microstructure and magnetic and dielectric properties of M-type barium ferrites," Ceramics International, 2022.
    [30] F. Nanni, P. Travaglia, and M. Valentini, "Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites," Composites science and technology, vol. 69, no. 3-4, pp. 485-490, 2009.
    [31] G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, "A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites," Composites Science and Technology, vol. 67, no. 7-8, pp. 1709-1718, 2007.
    [32] T. Zhao et al., "In situ synthesis and electromagnetic wave absorbing properties of sandwich microstructured graphene/La-doped barium ferrite nanocomposite," RSC advances, vol. 7, no. 59, pp. 37276-37285, 2017.
    [33] F. Yongbao, Q. Tai, S. Chunying, and L. Xiaoyun, "Complex permeability and permittivity and microwave absorption property of barium ferrite/EPDM rubber radar absorbing materials in 2-18GHz," in 2005 Asia-Pacific Microwave Conference Proceedings, 2005, vol. 2: IEEE, p. 4 pp.
    [34] C.-H. Peng, H.-W. Wang, S.-W. Kan, M.-Z. Shen, Y.-M. Wei, and S.-Y. Chen, "Microwave absorbing materials using Ag–NiZn ferrite core–shell nanopowders as fillers," Journal of magnetism and magnetic materials, vol. 284, pp. 113-119, 2004.
    [35] X. Huang, J. Zhang, M. Lai, and T. Sang, "Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers," Journal of Alloys and Compounds, vol. 627, pp. 367-373, 2015.
    [36] P. Md Gazzali and G. Chandrasekaran, "Enhancement of hard magnetic properties of BaFe12O19 nanoparticles," Journal of Materials Science: Materials in Electronics, vol. 25, no. 2, pp. 702-709, 2014.
    [37] J. Kreisel, G. Lucazeau, and H. Vincent, "Raman spectra and vibrational analysis of BaFe12O19hexagonal ferrite," Journal of solid state chemistry, vol. 137, no. 1, pp. 127-137, 1998.
    [38] K. Rana, P. Thakur, M. Tomar, V. Gupta, and A. Thakur, "Investigation of cobalt substituted M-type barium ferrite synthesized via co-precipitation method for radar absorbing material in Ku-band (12–18 GHz)," Ceramics International, vol. 44, no. 6, pp. 6370-6375, 2018.
    [39] S. Kumar, M. K. Manglam, S. Supriya, H. K. Satyapal, R. K. Singh, and M. Kar, "Lattice strain mediated dielectric and magnetic properties in La doped barium hexaferrite," Journal of Magnetism and Magnetic Materials, vol. 473, pp. 312-319, 2019.

    下載圖示 校內:2024-09-23公開
    校外:2024-09-23公開
    QR CODE