| 研究生: | 陳士軒 Chen, Shih-Hsuan | 
|---|---|
| 論文名稱: | 介電陶瓷材料
(Mg0.95Zn0.05)2TiO4 與Ba(Ti1-xMx)4O9
(M = Zr、Sn)之微波特性探討及應用 Microwave Dielectric Properties and Applications of (Mg0.95Zn0.05)2TiO4 and Ba(Ti1-xMx)4O9 (M = Zr, Sn) | 
| 指導教授: | 黃正亮 Huang, Cheng-Liang | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 電機資訊學院 - 電機工程學系 Department of Electrical Engineering | 
| 論文出版年: | 2010 | 
| 畢業學年度: | 98 | 
| 語文別: | 中文 | 
| 論文頁數: | 122 | 
| 中文關鍵詞: | 微波介電材料 、低損耗 | 
| 外文關鍵詞: | (Mg0.9Zn0.05)2TiO4, Dielectric properties, Low-loss | 
| 相關次數: | 點閱:70 下載:1 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
摘要 
此篇論文主要分為兩大部分來探討及研究,第一部份將介紹低損耗的介電材料,在(Mg0.95Zn0.05)2TiO4系統中試圖以具正值共振頻率溫度飄移係數的鈣鈦礦材料,CaTiO3 (+800 ppm/°C)、SrTiO3 (+1600 ppm/°C) 及Ca0.8Sr0.2TiO3 (+991 ppm/°C)調整溫度飄移係數使其為零。經由實驗的結果,得知0.93(Mg0.95Zn0.05)2TiO4–0.07Ca0.8Sr0.2TiO3有最佳的微波介電特性,其εr~17.86、Q×f ~ 133,600 GHz (at 10 GHz)及τf ~ –5 ppm/°C;而在Ba(Ti1-xMx)4O9系統中(M = Sn、Zr) 則是探討材料的微結構及微波介電特性。在M = Zr且x = 0.0125時在燒結溫度1300℃持溫4小時之下,可得到Ba(Ti0.9875Zr0.0125)4O9之最佳介電特性εr = 34.80,Q׃ ~ 63,700 GHz (at 8 GHz),τf ~ 13 ppm/℃。而當M = Sn且x = 0.0125時在燒結溫度1270℃持溫4小時之下,可得到Ba(Ti0.9875Sn0.0125)4O9之最佳介電特性εr = 36.46,Q׃ ~ 50,600 GHz (at 7.2 GHz),τf ~ 16.87 ppm/℃ 
第二部份將介紹其在被動電路之應用,且實做於不同基板上探討元件尺寸的改善。將分別以 FR4、Al2O3及0.93(Mg0.95Zn0.05)2TiO4-0.07(Ca0.8Sr0.2)TiO3作為基板來設計一微帶線帶通濾波器,且藉由加入開路殘段而達到倍頻抑制的效果。濾波器的規格為:中心頻率 2.4 GHz、頻寬為 7 %,並使用電磁模擬軟體 IE3D來進行電腦模擬。
Abstract
There are two main subjects in this paper. First we will disduss two kinds of low loss dielectric materials, then try to make temperature coefficient of resonant freguency near zero and find out the best microwave dielectric properties. Second, there will be a discussion of passive component and improvement in different substrates.
First, the improvement of τf of (Mg0.95Zn0.05)2TiO4 base on Mg2TiO4 structure followed up the introduced of (Mg0.95Zn0.05)2TiO4 have been investigated in this paper. In order to adjust the negative τf, CaTiO3, SrTiO3 and Ca0.8Sr0.2TiO3 peroveskite which have been add. The experiment result show that 0.93(Mg0.95Zn0.05)2TiO4-0.07(Ca0.8Sr0.2)TiO3 have the best microwave dielectric properties: εr ~17.86, Q×f ~133,600 GHz (at 10 GHz) and τf ~ –5 ppm/°C.
Then, BaTi4O9-base microwave dielectric ceramics substute Ti4+ by Zr4+ and Sn4+ were synthesized using the solid-state reaction reaction froming Ba(Ti1-xMx)4O9 (M = Sn, Zr). When M = Zr and x=0.0125, we can obtain the best dielectric properties of Ba(Ti0.9875Zr0.0125)4O9 : εr = 34.80, Q׃ ~ 63,700 GHz (at 8 GHz), τf ~ 13 ppm/°C. With M = Sn and x=0.0125, the best dielectric properties, εr = 36.46, Q׃~50,600 GHz (at 7.2 GHz), τf ~ 16.87 ppm/°C were obtained for Ba(Ti0.9875Sn0.0125)4O9.
Besides, with open-stub ring bandpass filter were studied in second section which achieved spurious responses suppression by open-stub and properly feed-in structure. We simulated it by electromagnetic simulation software (IE3D) at setting of center frequency 2.4 GHz and bandwidth 7 %. Also, we try to realized that the improvement of Insertion-Loss and circuit size at the substitution of substrates FR4, Al2O3 and 0.93(Mg0.95Zn0.05)2TiO4-0.07(Ca0.8Sr0.2)TiO3 for the microstrip bandpass filter.
參考文獻
[1]	翁敏航, “射頻被動元件設計”, 東華書局, 95年9月
[2]	David M. Pozar, Microwave Engineering. Addison-Wesley, 1998.
[3]	D. Kajfez, “Computed model field distribution for isolated dielectric resonators,” IEEE Trans. Microw. Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[4]	D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave SysTFm News, vol. 13, pp. 152-161, 1983.
[5]	D. Kajfez and P. Guillon,” Dielectric resonators.”, New York: Artech House, 1989.
[6]	Kingery、Bowen and Uhlmann著, 陳皇鈞譯,”陶瓷材料概論”, 曉園出版社.
[7]	W.J.Huppmann and G.Petzow “The Elementary Mechanisms of Liquid Sintering”, Sintering Processes, Plenum Press, pp. 189-202, 1979.
[8]	H.S.  Cannon, F.V. Lenel in  " Proceedings of the Plansee Seminar ",  Edited  by F.Benesovsky Metallwerk Plansee, Reutte, pp.106, 1953.
[9]	V.N. Eremenko, Y.V. Naidich and I.Aienko, Liquid Sintering, Consolation New York , Ch.4, 1970.
[10]	K.S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy,1984.
[11]	J.W. Cahn and R.B. Heady, J. Am. Ceram. Soc., pp.406, 1970.
[12]	R. Raj and C.K. Chyung  “ Solution Reprecipitation Creep in Glass Ceramics ” Acta Metall, pp. 159-166, 1980.
[13]	W.J. Huppmann and G.Petzow, Sintering process, Edited by G.C. Kuczynski, Plenum Press, New York, pp. 189, 1980.
[14]	W.J. Huppmann and G.Petzow, Ber. Bunnsenges Phys. Chem. Vol. 82, pp. 308, 1978.
[15]	R.M.German : Liquid Phase Sintering, Plenum Press, New York, ch4, 1985.
[16]	J.H.Jean and C.H.Lin: J.Mater.Sci.24 , pp. 500, 1989.
[17]	W. A. Deer, R. A. Howie, J. Zussman, “An Introduction to the Rock-forming Minerals,” Second Edition, 1992.
[18]	N. J. van der Laag, M. D. Snel, P. C. M. M. Magusin, G. de With, “Structural, Elastic, Thermophysical and Dielectric Properties of Zinc Aluminate (ZnAl2O4),” J. Eur. Ceram. Soc., 24 , pp.2417–2424, 2004.
[19]	余樹楨, “晶體之結構與性質,” 渤海堂文化公司, 2007.
[20]	吳朗, 電工材料, 滄海書局, 87年2月
[21]	Chun-Te Lee, Yi-Chang Lin, Chi-Yuen Huang, Che-Yi Su, and Ching-Li Hu, “Cation Ordering and Dielectric Characteristics in Barium Zinc Niobate,” J. Am. Ceram. Soc., 90 [2], pp.483-489 , 2007.
[22]	David H. Templeton,Carol H. Dauben, “Polarized Octahedra in Barium Tetratitanate,” The Journal of Chemical Physics, 1960.
[23]	黃啟原,鄭雅芳, “Crystal Structure and Dielectric Properties of Ba-Ti-O Compounds and Structure-Microwave Dielectric Property Relations in Ba1-xCax(Mg1/3Nb2/3)O3 Ceramics,” 2005. 
[24]	Negrila Catalinn, Marin Cernea, “Characterization of BaTi4O9 ceramics by Raman spectroscopy and XPS after ion etching,” Journal of Optoelectronics and Advanced Materials, Vol. 8[5], p.1879 – 1883, 2006.
[25]	S. Ogura, K. Sato and Y. Inoue, “Effects of RuO2 dispersion on photocatalytic activity for water decomposition of BaTi4O9 with a pentagonal prism tunnel and K2Ti4O9 with a zigzag layer structure” Physical Chemistry Chemical Physics, 2[10], pp. 2449-2454, 2000.
[26]	R.L. Geiger, P.E. Allen, N.R. Strader, “VLSI Design Techniques for Analog and Digital Circuits”, McGraw-Hill, pp. 674-685, 1990.
[27]	V.N. Eremenko, Y.V. Naidich, and I. Aienko, "Liquid Sintering", Consolation New York , ch4, 1970.
[28]	K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis , “Microstrip Lines and Slotlines Second Edition”, Artech House, Boston, 1996.
[29]	R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microw. Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[30]	G. L. Matthaei, L. Young, and E. M. T. Jones,” Microwave filters impedance- mattching, networks, and coupling structures”, New York: McGraw-Hill, 1980.
[31]	V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 573-578, Sep. 1980.
[32]	張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[33]	K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
[34]	J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications: Wiley-Interscience, 2001.
[35]	J. Helszajn, “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits,” McGraw-Hill, 1992.
[36]	K. Chang, Microwave Ring Circuits and Antennas. New York: Wiley, 1996.
[37]	C. C. Yu and K. Chang, “Transmission-line analysis of a capacitively coupled microstrip-ring resonator”, IEEE Trans. Microwave Theory Tech., vol. 45, pp. 2018-2024, Nov. 1997.
[38]	D. M. Pozar, Microwave Engineering., New York: John Wiley & Sons, 2nd Ed., 1998.
[39]	Lung-Hwa Hsieh , Kai Chang, “Slow-Wave Bandpass Filters Using Ring or Stepped-Impedance Hairpin Resonators”, IEEE Trans. Microwave Theory Tech., vol. 50, pp.1795-1800, July 2002
[40]	G. Kumar and K. C. Gupta, “Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges”, IEEE Trans. Antennas Propagat., vol. AP-32, pp. 1375-1379, Dec. 1984.
[41]	R. Mongia, I. Bahl, and P. Bhartia, “RF and Microwave Coupled-Line Circuits”.  Norwood, MA: Artech House, 1999.
[42]	Mohd Khairul Mohd Salleh, Gaëtan Prigent, Olivier Pigaglio, and Raymond Crampagne, “Quarter-Wavelength Side-Coupled Ring Resonator for Bandpass Filters,” IEEE Trans. Microwave Theory Tech., Vol.56, pp.156-162, 2008.
[43]	Z. Ismail Khan, M. K. Mohd Salleh, “Achievable Bandwidth of a Quarter Wavelength Side-Coupled Ring Resonator,” IEEE Symposium on Industrial Electronics and Applications (ISIEA), pp.358-361, October 4-6, 2009.
[44]	P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE MTT-S, Symp. Dig., pp.473-476, 1985.1
[45]	Y. Kobayashi and N. Katoh, “Microwave measurement of dielectric properties     of low-loss materials by dielectric rod resonator method,” IEEE. Trans. Microw. Theory Tech., MTT-33, 586-592, 1985.
[46]	Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. Microw. Theory Tech., MTT-28, 1077-1085, 1980.
[47]	Yue Ping Zhang and Mei Sun, “Dual-Band Microstrip Bandpass Filter Using Stepped-Impedance Resonators With New Coupling Schemes,” IEEE Trans. Microw. Theory Tech., vol.54, NO. 10, pp. 3779-3785, Oct. 2006.
[48]	B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range,” IEEE. Trans. Microw. Theory Tech., MTT, vol. MTTS, pp. 402-410, 1960.
[49]	Pai-hsuan SUN, Tetsuro Nakamura, Yue Jin Shan, Yoshiyuki Inaguma, Mitsuru Itoh, Toshiki Kitamura, “Dielectric Behavior of (1-x)LaAlO3–xSrTiO3 Solid Solution System at Microwave Frequencies”, Jpn. J. Appl. Phys., vol.37 pp. 5625-5629, 1998.
[50]	R.C. Kell, A.C. Greenham, G.C.E. Olds, ”High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss” J. Am. Ceram. Soc. Vol.56[7], pp.352-356, 1973.
[51]	P. L. Wise, I. M. Reaney, W. E. Lee, ”Structure–microwave property relations in (SrxCa(1−x))n+1TinO3n+1,” J. Eur. Ceram. Soc., Vol.21 , pp.1723-1726, 2001.
[52]	K. Yan, M. Fujii, T. Karaki, M. Adachi, ” Microwave dielectric properties of Ca0.8Sr0.2TiO3-Li0.5Nd0.5TiO3 ceramics with near-zero temperature coefficient of resonant frequency” Jpn. J. Appl. Phys., Vol.46, pp.7105-7107, 2007.
[53]	Cheng-Liang HUANG, Shi-Sheng LIU, “Characterization of Extremely Low Loss Dielectrics (Mg0.95Zn0.05)TiO3 at Microwave Frequency,” Jpn. J. Appl. Phys., 46[1], pp. 283–285, 2007.
[54]	Cheng-Liang Huang,w and Shih-Sheng Liu, “Low-Loss Microwave Dielectrics in the (Mg1-xZnx)2TiO4 Ceramics,” J. Am. Ceram. Soc., 91 [10] 3428–3430, 2008.
[55]	M. H. Weng, T. J. Liang and C. L. Huang, “Lowering of sintering temperature and microwave dielectric properties of BaTi4O9 ceramics prepared by the polymeric precursor method,” J. Eur. Ceram. Soc., Vol.22, pp.1693-1698, 2002.
[56]	Cheng-Fu Yang, Wen-Cheng Tzou, Ho-Hua Chung, Chien-Chen Diao, Chien-Jung Huang “The microwave dielectric characteristics of Ba(Ti4−xSnx)O9 ceramics,” J. Alloys Compd., Vol. 477, pp.673-676, 2009.
[57]	Hyo-Jong Lee, Kug-Sun Hong, Sang-Joo Kim, “Dielectric Properties of MNb2O6 Compounds (Where M= Ca, Mn, Co, Ni, or Zn),” Material Research Bulletin, Vol.32[7], pp.847-855, 1997. 
[58]	A. Griol, D.Mira, J. Marti, J.L. Corral, “Harmonic Suppression Technique Based on Mode Coupling in Microstrip Multistage Coupled Ring Bandpass Filters,” IEEE MTT-S Digest, 2004. 
[59]	Bo-Yun Jang, Young-Hun Jeong, Suk-Jin Lee, Kyong-Jae Lee, Sahn Nahm, Ho-Jung Sun, Hwack-Joo Lee, “Microstructure and dielectric properties of the Ti-rich BaO–TiO2 thin films for microwave devices,” J. Eur. Ceram. Soc., Vol.26, pp.1913–1916, 2006.
[60]	Jong-Bong Lim, Min-Han Kim, Jae-Chul Kim, Sahn Nahm, Jong-Hoo Paik, Jong-Hee Kim, “Effect of BaCu(B2O5) Additive on the Sintering Temperature and Microwave Dielectric Properties of BaTi4O9 Ceramics,” Jpn. J. Appl. Phys., Vol.45, pp. L242-L244, 2006.