簡易檢索 / 詳目顯示

研究生: 李美寬
Li, Mei-Kuan
論文名稱: 以環境效率觀點探討土地利用變遷之發展效益與環境影響之關係-以桃園市為例
Exploring the Relationship Between Development Benefits and Environmental Impacts of Land Use Change from the Perspective of Eco-Efficiency: A Case Study of Taoyuan City
指導教授: 顧嘉安
Ku, Chia-An
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 128
中文關鍵詞: 環境效率土地利用變遷資料包絡分析情境模擬
外文關鍵詞: Eco-efficiency, Land use change, Data envelopment analysis, Scenario simulation
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在氣候變遷與都市擴張的雙重壓力下,臺灣面臨極端氣候事件與土地資源過度開發所帶來的生態衝擊,土地利用變遷已成為影響生態系統服務的重要因素,如何在追求都市發展與環境保護之間取得平衡,凸顯了環境效率評估的必要性。然而,過往針對土地利用變遷之環境效率研究多著重於具體且易監測的指標,而較少考量生態系統服務的隱性價值,尤其是調節服務對於氣候變遷減緩與調適發揮的關鍵作用,此外,少有研究將不同規劃策略納入模擬並分析其對環境效率的影響,因此缺乏對最適方案的探討。
    有鑑於此,本研究以桃園市332個村里作為實證範圍,並以2005年、2013年、2021年與計畫目標2036年為時間斷面點,嘗試將調節服務納入環境效率評估架構,分析土地利用變遷過程中發展效益與環境影響之間的權衡關係,並且探討不同規劃策略之環境效率表現。於評估框架中,選用建成區面積、碳儲存量與逕流滯留量作為投入指標,並以人口與工商業產值作為產出指標。透過資料包絡分析評估過往環境效率表現,此外,以核密度估計探討環境效率之時空演變趨勢,並且進一步應用LCM模擬2036年之發展情境,包含現況延續(BAU)、農地維護(FP)與生態保護(EP)情境,藉此檢視各方案之環境效率表現,最後提出規劃建議。
    研究發現,實證地區自2013年以後,因建成區快速擴張導致碳儲存與逕流滯留服務明顯下降,整體環境效率亦從平均0.848降至0.683,顯示於追求發展之路徑下,效率表現呈現劣化趨勢。其次,2036年發展情境之評估結果顯示,農地維護策略具有相對較佳之環境效率表現,該策略除了有效控制都市擴張、保護生態系統服務,同時保留一定程度之經濟產出空間,體現出兼顧環境保護與發展效益之潛力,相較之下,現況延續可能導致環境效率表現持續惡化;而生態保護策略嚴格保護林地、農地與綠地,儘管有助於避免環境資源過度消耗,但亦抑制土地利用發展效益,導致實際效率表現較低,故強化農地維護策略是促進永續發展之較適方案。
    本研究透過設計環境效率評估框架,藉由效率評估、時空變遷趨勢分析與未來情境模擬,建立以績效為基礎的土地利用管理方法,該工具除了可用於過去規劃成果之檢核,亦可針對多個策略方案進行篩選,可為規劃部門提供實證性的空間規劃參考依據,並且回應氣候變遷下之永續發展目標。

    Under the pressures of climate change and urban expansion, land use change has become a critical driver of ecosystem service degradation in Taiwan. How to strike a balance between urban development and environmental protection highlights the necessity of assessing eco-efficiency. However, policymakers often overlook the hidden value of ecosystem services.
    Consequently, this study aims to evaluate the eco-efficiency of land use change by integrating regulating services into a performance-based framework and explore the eco-efficiency of various planning strategies through scenario simulation. Using data from 332 villages in Taoyuan City collected in 2005, 2013, and 2021, along with projections for 2036, we employed Data Envelopment Analysis (DEA). The inputs included built-up area, carbon storage, and runoff retention, while the outputs comprised population and economic value. We then analyzed spatiotemporal trends and simulated planning scenarios for 2036: Business-as-Usual (BAU), Farmland Protection (FP), and Ecological Protection (EP) using the Land Change Modeler (LCM).
    The results indicate that urban expansion after 2013 resulted in a decline in efficiency. Among the future strategies, FP showed the highest efficiency value by effectively balancing development and conservation. In contrast, while EP helps to prevent environmental degradation, it also restricts the benefits of land use development, leading to lower efficiency. Eco-efficiency evaluation framework can be utilized not only to assess past planning outcomes but also to evaluate multiple strategic options. It provides planning departments with empirical recommendations for spatial planning and supports the achievement of sustainable development goals in the context of climate change.

    第一章 緒論 1 第一節 研究動機與目的 1 第二節 研究流程 2 第三節 研究範疇 4 第二章 文獻回顧 7 第一節 土地利用變遷之發展效益與環境衝擊 7 第二節 土地利用之環境效率分析理論與應用 11 第三節 土地利用變遷分析理論與應用 25 第三章 研究設計 32 第一節 研究提問 32 第二節 研究架構 32 第三節 土地利用環境效率評估框架設計 35 第四節 土地利用之環境效率評估 44 第五節 未來土地利用發展最適情境分析 48 第四章 實證結果與討論 54 第一節 實證地區分析資料說明 54 第二節 實證地區都市發展過程 58 第三節 發展情境模擬 69 第四節 土地利用環境效率評估 91 第五章 結論與建議 103 第一節 研究結論 103 第二節 後續研究建議 106 參考文獻 107

    1. 林真德(2020)。都市周邊地區農地轉用之環境效率分析-以臺南市為例。國立成功大學都市計劃研究所碩士論文,臺南市。
    2. 孫遜(2004)。資料包絡分析法:理論與應用。臺北市:揚智文化。
    3. 桃園市政府(2021)。桃園市國土計畫。
    4. 桃園市政府(2021)。桃園市國土計畫規劃技術報告。
    5. 高強、黃旭男、Sueyoshi, T,(2003),管理績效評估-資料包絡分析,台北:華泰
    6. 郭幸福(2010)。都市土地發展之環境轉變效率影響因素之研究。國立成功大學都市計劃研究所博士論文,臺南市。
    7. 黃書禮、李盈潔、李叢禎、周素卿、林子倫、張昱諄、張學聖、葉佳宗、詹士樑、蔡育新(2018)。接軌 [都市化與環境變遷] 國際研究-台灣研究議題。台灣土地研究,21(2),93-110.
    8. 經濟部水利署(2020)。出流管制技術手冊。
    9. 鄒克萬、郭幸福、柯佩婷(2010)。評估都市土地使用變遷之自然環境效率-以永康市為例。都市與計劃,37(1),143-165。doi:10.6128/CP.37.1.143]。
    10. 鄒克萬、顧嘉安、郭幸福(2014)。以馬可夫鏈細胞自動機模型模擬極端洪水對都市土地利用型態之影響: 以台北市為例。都市與計劃,41(1),43-66。
    11. 鄒克萬、黃書偉(2007)。都市土地利用變遷對自然環境衝擊之空間影響分析。地理學報,(8),1-18。
    12. 顧嘉安(2020)。以 agent-based model 模擬都市發展複雜時空動態之初探。都市與計劃,47(2),149-172。
    13. Abdeta, D., Begna, R., Zerfu, H., Alemayehu, A., Ayana, A. N., & Tsegaye, N. T. (2024). Analyzing the extent and drivers of land use/land cover change in Southwestern Ethiopia. Discover Sustainability, 5(1), 505. https://doi.org/10.1007/s43621-024-00734-0
    14. Adelisardou, F., Zhao, W., Chow, R., Mederly, P., Minkina, T., & Schou, J. S. (2022). Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). International Journal of Environmental Science and Technology, 19(7), 5929–5944. https://doi.org/10.1007/s13762-021-03676-6
    15. Allan, A., Soltani, A., Abdi, M. H., & Zarei, M. (2022). Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review. Land, 11(8), Article 8. https://doi.org/10.3390/land11081222
    16. Angel, S., Parent, J., Civco, D. L., & Blei, A. (2010). The persistent decline in urban densities: global and historical evidence of'sprawl'.
    17. Bai, Y., Deng, X., Jiang, S., Zhang, Q., & Wang, Z. (2018). Exploring the relationship between urbanization and urban eco-efficiency: Evidence from prefecture-level cities in China. Journal of Cleaner Production, 195, 1487–1496. https://doi.org/10.1016/j.jclepro.2017.11.115
    18. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078–1092.
    19. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
    20. Chen, W., Chen, W., Ning, S., Liu, E., Zhou, X., Wang, Y., & Zhao, M. (2019). Exploring the industrial land use efficiency of China’s resource-based cities. Cities, 93, 215–223. https://doi.org/10.1016/j.cities.2019.05.009
    21. Chen, Y., Chen, Z., Xu, G., & Tian, Z. (2016). Built-up land efficiency in urban China: Insights from the General Land Use Plan (2006–2020). Habitat International, 51, 31–38. https://doi.org/10.1016/j.habitatint.2015.10.014
    22. Chuai, X., Huang, X., Wu, C., Li, J., Lu, Q., Qi, X., Zhang, M., Zuo, T., & Lu, J. (2016). Land use and ecosystems services value changes and ecological land management in coastal Jiangsu, China. Habitat International, 57, 164–174. https://doi.org/10.1016/j.habitatint.2016.07.004
    23. Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253–260. https://doi.org/10.1038/387253a0
    24. Daily, G., Postel, S., Bawa, K., & Kaufman, L. (1997). Nature’s Services: Societal Dependence On Natural Ecosystems. Bibliovault OAI Repository, the University of Chicago Press.
    25. Dang, N., & Kawasaki, A. (2016). A Review of Methodological Integration in Land-Use Change Models. International Journal of Agricultural and Environmental Information Systems, 7, 1–25. https://doi.org/10.4018/IJAEIS.2016040101
    26. Dong, X., Yang, R., Ye, Y., & Cui, L. (2023). Trade-off efficiency: Linking urban socioecological quality with land use efficiency from return on investment perspective. Sustainable Cities and Society, 99, 104968. https://doi.org/10.1016/j.scs.2023.104968
    27. Eastman, J. R. (2015). TerrSet manual. Accessed in TerrSet Version, 18(1).
    28. Eastman, J. R., & Toledano, J. (2018). A Short Presentation of the Land Change Modeler (LCM). M. T. Camacho Olmedo, M. Paegelow, J.-F. Mas, & F. Escobar (edit), Geomatic Approaches for Modeling Land Change Scenarios (499–505). Springer International Publishing. https://doi.org/10.1007/978-3-319-60801-3_36
    29. Fan, L., Cai, T., Wen, Q., Han, J., Wang, S., Wang, J., & Yin, C. (2023). Scenario simulation of land use change and carbon storage response in Henan Province, China: 1990–2050. Ecological Indicators, 154, 110660. https://doi.org/10.1016/j.ecolind.2023.110660
    30. Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253–290. https://doi.org/10.2307/2343100
    31. Fei, R., Lin, Z., & Chunga, J. (2021). How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector. Land Use Policy, 103, 105300. https://doi.org/10.1016/j.landusepol.2021.105300
    32. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., ... & Snyder, P. K. (2005). Global consequences of land use. science, 309(5734), 570-574.
    33. Fu, B., Wang, S., Su, C., & Forsius, M. (2013). Linking ecosystem processes and ecosystem services. Current Opinion in Environmental Sustainability, 5(1), 4–10. https://doi.org/10.1016/j.cosust.2012.12.002
    34. Fu, B.-J., & Zhang, L. (2014). Land use change and ecosystem services: Concepts, methods and progress. PROGRESS IN GEOGRAPHY, 33, 441–446. https://doi.org/10.11820/dlkxjz.2014.04.001
    35. Fu, Q., Li, B., Hou, Y., Bi, X., & Zhang, X. (2017). Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Science of The Total Environment, 607–608, 633–646. https://doi.org/10.1016/j.scitotenv.2017.06.241
    36. Fu, X., Wang, X., & Yang, Y. J. (2018). Deriving suitability factors for CA-Markov land use simulation model based on local historical data. Journal of Environmental Management, 206, 10–19. https://doi.org/10.1016/j.jenvman.2017.10.012
    37. Gharaibeh, A., Shaamala, A., Obeidat, R., & Al-Kofahi, S. (2020). Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon, 6(9), e05092. https://doi.org/10.1016/j.heliyon.2020.e05092
    38. Hasan, S. S., Zhen, L., Miah, Md. G., Ahamed, T., & Samie, A. (2020). Impact of land use change on ecosystem services: A review. Environmental Development, 34, 100527. https://doi.org/10.1016/j.envdev.2020.100527
    39. Hersperger, A. M., Oliveira, E., Pagliarin, S., Palka, G., Verburg, P., Bolliger, J., & Grădinaru, S. (2018). Urban land-use change: The role of strategic spatial planning. Global Environmental Change, 51, 32–42. https://doi.org/10.1016/j.gloenvcha.2018.05.001
    40. Huang, W., Hashimoto, S., Yoshida, T., Saito, O., & Taki, K. (2021). A nature-based approach to mitigate flood risk and improve ecosystem services in Shiga, Japan. Ecosystem Services, 50, 101309. https://doi.org/10.1016/j.ecoser.2021.101309
    41. Jokar Arsanjani, J., Helbich, M., Kainz, W., & Darvishi Boloorani, A. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275. https://doi.org/10.1016/j.jag.2011.12.014
    42. Koomen, E., Stillwell, J., Bakema, A., & Scholten, H. J. (edit). (2007). Modelling Land-Use Change: Progress and Applications (90). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5648-2
    43. Ku, C.-A. (2016). Incorporating spatial regression model into cellular automata for simulating land use change. Applied Geography, 69, 1–9. https://doi.org/10.1016/j.apgeog.2016.02.005
    44. Ku, C.-A. (2024). Evaluating the effects of land-use strategies on future flood risk reduction in urban areas. Cities, 150, 104989. https://doi.org/10.1016/j.cities.2024.104989
    45. Kuang, B., Lu, X., Zhou, M., & Chen, D. (2020). Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technological Forecasting and Social Change, 151, 119874. https://doi.org/10.1016/j.techfore.2019.119874
    46. Lantman, J., Verburg, P., Bregt, A., & Geertman, S. (2011). Core Principles and Concepts in Land-Use Modelling: A Literature Review. Land-use Modelling in Planning Practice (101, 35–57). https://doi.org/10.1007/978-94-007-1822-7_3
    47. Li, Y., Liu, Z., Li, S., & Li, X. (2022). Multi-Scenario Simulation Analysis of Land Use and Carbon Storage Changes in Changchun City Based on FLUS and InVEST Model. Land, 11(5), Article 5. https://doi.org/10.3390/land11050647
    48. Locatelli, B. (2016). Ecosystem Services and Climate Change (481–490).
    49. Locatelli, B., Imbach, P., & Wunder, S. (2014). Synergies and trade-offs between ecosystem services in Costa Rica. Environmental Conservation, 41(1), 27–36. https://doi.org/10.1017/S0376892913000234
    50. Lu, X., Kuang, B., & Li, J. (2018). Regional difference decomposition and policy implications of China’s urban land use efficiency under the environmental restriction. Habitat International, 77, 32–39. https://doi.org/10.1016/j.habitatint.2017.11.016
    51. Mansour, S., Al-Belushi, M., & Al-Awadhi, T. (2020). Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy, 91, 104414. https://doi.org/10.1016/j.landusepol.2019.104414
    52. Mas, J.-F., Kolb, M., Paegelow, M., Camacho Olmedo, M. T., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94–111. https://doi.org/10.1016/j.envsoft.2013.09.010
    53. Munang, R., Thiaw, I., Alverson, K., Liu, J., & Han, Z. (2013). The role of ecosystem services in climate change adaptation and disaster risk reduction. Current Opinion in Environmental Sustainability, 5(1), 47–52. https://doi.org/10.1016/j.cosust.2013.02.002
    54. Noszczyk, T. (2019). A review of approaches to land use changes modeling. Human and Ecological Risk Assessment: An International Journal, 25(6), 1377–1405. https://doi.org/10.1080/10807039.2018.1468994
    55. Pérez-Vega, A., Mas, J.-F., & Ligmann-Zielinska, A. (2012). Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environmental Modelling & Software, 29(1), 11–23. https://doi.org/10.1016/j.envsoft.2011.09.011
    56. Pijanowski, B. C., Pithadia, S., Shellito, B. A., & Alexandridis, K. (2005). Calibrating a neural network‐based urban change model for two metropolitan areas of the Upper Midwest of the United States. International Journal of Geographical Information Science, 19(2), 197–215. https://doi.org/10.1080/13658810410001713416
    57. Pontius, G. R., & Malanson, J. (2005). Comparison of the structure and accuracy of two land change models. International Journal of Geographical Information Science, 19(2), 243–265. https://doi.org/10.1080/13658810410001713434
    58. Pontius, R. (2000). Quantification Error versus Location Error in Comparison of Categorical Maps. Photogrammetric Engineering & Remote Sensing, 66, 1011–1016.
    59. Puryaev, A. S., & Puryaev, R. A. (2024). Eco-efficiency: Analysis of measurement and evaluation methods. E3S Web of Conferences, 531, 04013. https://doi.org/10.1051/e3sconf/202453104013
    60. Qin, X., & Sun, Y. (2019). Cross-Regional Comparative Study on Environmental–Economic Efficiency and Driving Forces behind Efficiency Improvement in China: A Multistage Perspective. International Journal of Environmental Research and Public Health, 16(7), Article 7. https://doi.org/10.3390/ijerph16071160
    61. Qu, Y., & Long, H. (2018). The economic and environmental effects of land use transitions under rapid urbanization and the implications for land use management. Habitat International, 82, 113–121. https://doi.org/10.1016/j.habitatint.2018.10.009
    62. Quagliolo, C., Comino, E., & Pezzoli, A. (2021). Experimental Flash Floods Assessment Through Urban Flood Risk Mitigation (UFRM) Model: The Case Study of Ligurian Coastal Cities. Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.663378
    63. Quagliolo, C., Roebeling, P., Matos, F., Pezzoli, A., & Comino, E. (2023). Pluvial flood adaptation using nature-based solutions: An integrated biophysical-economic assessment. Science of The Total Environment, 902, 166202. https://doi.org/10.1016/j.scitotenv.2023.166202
    64. Schaltegger, S., & Sturm, A. (1990). Ökologische Rationalität: Ansatzpunkte zur Ausgestaltung von ökologieorientierten Managementinstrumenten. Die Unternehmung, 44(4), 273–290.
    65. Schröter, M., Stumpf, K. H., Loos, J., van Oudenhoven, A. P. E., Böhnke-Henrichs, A., & Abson, D. J. (2017). Refocusing ecosystem services towards sustainability. Ecosystem Services, 25, 35–43. https://doi.org/10.1016/j.ecoser.2017.03.019
    66. Seto, K. C., Sánchez-Rodríguez, R., & Fragkias, M. (2010). The New Geography of Contemporary Urbanization and the Environment. Annual Review of Environment and Resources, 35(Volume 35, 2010), 167–194. https://doi.org/10.1146/annurev-environ-100809-125336
    67. Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., et al. (2018). InVEST 3.7.0.post9 User’s Guide.
    68. Sirakaya, A., Cliquet, A., & Harris, J. (2018). Ecosystem services in cities: Towards the international legal protection of ecosystem services in urban environments. Ecosystem Services, 29, 205–212. https://doi.org/10.1016/j.ecoser.2017.01.001
    69. Song, M., An, Q., Zhang, W., Wang, Z., & Wu, J. (2012). Eco-efficiency evaluation based on data envelopment analysis: A review. Renewable and Sustainable Energy Reviews, 16(7), 4465–4469. https://doi.org/10.1016/j.rser.2012.04.052
    70. Steffen, W., Persson, Å., Deutsch, L., Zalasiewicz, J., Williams, M., Richardson, K., Crumley, C., Crutzen, P., Folke, C., Gordon, L., Molina, M., Ramanathan, V., Rockström, J., Scheffer, M., Schellnhuber, H. J., & Svedin, U. (2011). The Anthropocene: From Global Change to Planetary Stewardship. Ambio, 40(7), 739–761. https://doi.org/10.1007/s13280-011-0185-x
    71. Su, Q., & Jiang, X. (2021). Evaluate the economic and eco-efficiency of land use from the perspective of decision-makers’ subjective preferences. Ecological Indicators, 129, 107984. https://doi.org/10.1016/j.ecolind.2021.107984
    72. Su, Q., Chen, K., & Liao, L. (2021). The Impact of Land Use Change on Disaster Risk from the Perspective of Efficiency. Sustainability, 13(6), 3151. https://doi.org/10.3390/su13063151
    73. Sun, H., Cheng, L., Li, Z., Wang, Q., & Teng, J. (2022). A land-use benefit evaluation system with case study verification. PLOS ONE, 17(7), e0271557. https://doi.org/10.1371/journal.pone.0271557
    74. Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498–509. https://doi.org/10.1016/S0377-2217(99)00407-5
    75. Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119–132. https://doi.org/10.1016/j.isprsjprs.2017.01.001
    76. van Vliet, J., Bregt, A. K., Brown, D. G., van Delden, H., Heckbert, S., & Verburg, P. H. (2016). A review of current calibration and validation practices in land-change modeling. Environmental Modelling & Software, 82, 174–182. https://doi.org/10.1016/j.envsoft.2016.04.017
    77. Wang, B., & Cheng, W. (2022). Effects of Land Use/Cover on Regional Habitat Quality under Different Geomorphic Types Based on InVEST Model. Remote Sensing, 14(5), Article 5. https://doi.org/10.3390/rs14051279
    78. Wang, Z., Li, X., Mao, Y., Li, L., Wang, X., & Lin, Q. (2022). Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecological Indicators, 134, 108499. https://doi.org/10.1016/j.ecolind.2021.108499
    79. Wei, Q., Abudureheman, M., Halike, A., Yao, K., Yao, L., Tang, H., & Tuheti, B. (2022). Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecological Indicators, 145, 109632. https://doi.org/10.1016/j.ecolind.2022.109632
    80. Wheater, H., & Evans, E. (2009). Land use, water management and future flood risk. Land Use Policy, 26, S251–S264. https://doi.org/10.1016/j.landusepol.2009.08.019
    81. Whitford, V., Ennos, A. R., & Handley, J. F. (2001). “City form and natural process”—Indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landscape and Urban Planning, 57(2), 91–103. https://doi.org/10.1016/S0169-2046(01)00192-X
    82. World Bank. (2017). Land Use Planning for Urban Flood Risk Management. World Bank, Washington, DC. https://doi.org/10.1596/26654
    83. Wu, C., Wei, Y. D., Huang, X., & Chen, B. (2017). Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat International, 63, 67–78. https://doi.org/10.1016/j.habitatint.2017.03.012
    84. Xie, X., Fang, B., Xu, H., He, S., & Li, X. (2021). Study on the coordinated relationship between Urban Land use efficiency and ecosystem health in China. Land Use Policy, 102, 105235. https://doi.org/10.1016/j.landusepol.2020.105235
    85. Xu, C., Rahman, M., Haase, D., Wu, Y., Su, M., & Pauleit, S. (2020). Surface runoff in urban areas: The role of residential cover and urban growth form. Journal of Cleaner Production, 262, 121421. https://doi.org/10.1016/j.jclepro.2020.121421
    86. Xue, D., Yue, L., Ahmad, F., Draz, M. U., Chandio, A. A., Ahmad, M., & Amin, W. (2022). Empirical investigation of urban land use efficiency and influencing factors of the Yellow River basin Chinese cities. Land Use Policy, 117, 106117. https://doi.org/10.1016/j.landusepol.2022.106117
    87. Yang, Y., Li, M., Feng, X., Yan, H., Su, M., & Wu, M. (2021). Spatiotemporal variation of essential ecosystem services and their trade-off/synergy along with rapid urbanization in the Lower Pearl River Basin, China. Ecological Indicators, 133, 108439. https://doi.org/10.1016/j.ecolind.2021.108439
    88. Zhao, M., He, Z., Du, J., Chen, L., Lin, P., & Fang, S. (2019). Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecological Indicators, 98, 29–38. https://doi.org/10.1016/j.ecolind.2018.10.052
    89. Zhao, Z., Bai, Y., Wang, G., Chen, J., Yu, J., & Liu, W. (2018). Land eco-efficiency for new-type urbanization in the Beijing-Tianjin-Hebei Region. Technological Forecasting and Social Change, 137, 19–26. https://doi.org/10.1016/j.techfore.2018.09.031
    90. Zhu, L., Song, R., Sun, S., Li, Y., & Hu, K. (2022). Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecological Indicators, 142, 109178. https://doi.org/10.1016/j.ecolind.2022.109178
    91. Zhu, X., Li, Y., Zhang, P., Wei, Y., Zheng, X., & Xie, L. (2019). Temporal–spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency. Land Use Policy, 88, 104083. https://doi.org/10.1016/j.landusepol.2019.104083

    無法下載圖示 校內:2027-08-31公開
    校外:2027-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE